Computational prediction of ω-transaminase selectivity by deep learning analysis of molecular dynamics trajectories.

Q3 Biochemistry, Genetics and Molecular Biology
QRB Discovery Pub Date : 2023-01-01 DOI:10.1017/qrd.2022.22
Carlos Ramírez-Palacios, Siewert J Marrink
{"title":"Computational prediction of ω-transaminase selectivity by deep learning analysis of molecular dynamics trajectories.","authors":"Carlos Ramírez-Palacios,&nbsp;Siewert J Marrink","doi":"10.1017/qrd.2022.22","DOIUrl":null,"url":null,"abstract":"<p><p>We previously presented a computational protocol to predict the enzymatic (enantio)selectivity of an ω-transaminase towards a set of ligands (Ramírez-Palacios <i>et al.</i> (2021) <i>Journal of Chemical Information and Modeling</i> 61(11), 5569-5580) by counting the number of binding poses present in molecular dynamics (MD) simulations that met a defined set of geometric criteria. The geometric criteria consisted of a hand-crafted set of distances, angles and dihedrals deemed to be important for the enzymatic reaction to take place. In this work, the MD trajectories are reanalysed using a deep-learning approach to predict the enantiopreference of the enzyme without the need for hand-crafted criteria. We show that a convolutional neural network is capable of classifying the trajectories as belonging to the 'reactive' or 'non-reactive' enantiomer (binary classification) with a good accuracy (>0.90). The new method reduces the computational cost of the methodology, because it does not necessitate the sampling approach from the previous work. We also show that analysing how neural networks reach specific decisions can aid hand-crafted approaches (e.g. definition of near-attack conformations, or binding poses).</p>","PeriodicalId":34636,"journal":{"name":"QRB Discovery","volume":"4 ","pages":"e1"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392675/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"QRB Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qrd.2022.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

Abstract

We previously presented a computational protocol to predict the enzymatic (enantio)selectivity of an ω-transaminase towards a set of ligands (Ramírez-Palacios et al. (2021) Journal of Chemical Information and Modeling 61(11), 5569-5580) by counting the number of binding poses present in molecular dynamics (MD) simulations that met a defined set of geometric criteria. The geometric criteria consisted of a hand-crafted set of distances, angles and dihedrals deemed to be important for the enzymatic reaction to take place. In this work, the MD trajectories are reanalysed using a deep-learning approach to predict the enantiopreference of the enzyme without the need for hand-crafted criteria. We show that a convolutional neural network is capable of classifying the trajectories as belonging to the 'reactive' or 'non-reactive' enantiomer (binary classification) with a good accuracy (>0.90). The new method reduces the computational cost of the methodology, because it does not necessitate the sampling approach from the previous work. We also show that analysing how neural networks reach specific decisions can aid hand-crafted approaches (e.g. definition of near-attack conformations, or binding poses).

Abstract Image

Abstract Image

Abstract Image

基于分子动力学轨迹深度学习分析的ω-转氨酶选择性计算预测。
我们之前提出了一种计算方案,通过计算分子动力学(MD)模拟中存在的符合一组定义的几何标准的结合姿势的数量,来预测ω-转转酶对一组配体的酶(对映体)选择性(Ramírez-Palacios等人(2021)Journal of Chemical Information and Modeling 61(11), 5569-5580)。几何标准由一组手工制作的距离、角度和二面体组成,这些被认为是酶促反应发生的重要因素。在这项工作中,使用深度学习方法重新分析了MD轨迹,以预测酶的对映性,而无需手工制作标准。我们证明了卷积神经网络能够以良好的精度(>0.90)将轨迹分类为属于“反应性”或“非反应性”对映体(二元分类)。由于该方法不需要以往工作中的采样方法,因此降低了方法的计算成本。我们还表明,分析神经网络如何达到特定的决策可以帮助手工制作的方法(例如,近攻击构象的定义,或绑定姿势)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
QRB Discovery
QRB Discovery Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
3.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信