Geometric deep learning as a potential tool for antimicrobial peptide prediction.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2023-07-13 eCollection Date: 2023-01-01 DOI:10.3389/fbinf.2023.1216362
Fabiano C Fernandes, Marlon H Cardoso, Abel Gil-Ley, Lívia V Luchi, Maria G L da Silva, Maria L R Macedo, Cesar de la Fuente-Nunez, Octavio L Franco
{"title":"Geometric deep learning as a potential tool for antimicrobial peptide prediction.","authors":"Fabiano C Fernandes, Marlon H Cardoso, Abel Gil-Ley, Lívia V Luchi, Maria G L da Silva, Maria L R Macedo, Cesar de la Fuente-Nunez, Octavio L Franco","doi":"10.3389/fbinf.2023.1216362","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are components of natural immunity against invading pathogens. They are polymers that fold into a variety of three-dimensional structures, enabling their function, with an underlying sequence that is best represented in a non-flat space. The structural data of AMPs exhibits non-Euclidean characteristics, which means that certain properties, e.g., differential manifolds, common system of coordinates, vector space structure, or translation-equivariance, along with basic operations like convolution, in non-Euclidean space are not distinctly established. Geometric deep learning (GDL) refers to a category of machine learning methods that utilize deep neural models to process and analyze data in non-Euclidean settings, such as graphs and manifolds. This emerging field seeks to expand the use of structured models to these domains. This review provides a detailed summary of the latest developments in designing and predicting AMPs utilizing GDL techniques and also discusses both current research gaps and future directions in the field.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"3 ","pages":"1216362"},"PeriodicalIF":2.8000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374423/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2023.1216362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial peptides (AMPs) are components of natural immunity against invading pathogens. They are polymers that fold into a variety of three-dimensional structures, enabling their function, with an underlying sequence that is best represented in a non-flat space. The structural data of AMPs exhibits non-Euclidean characteristics, which means that certain properties, e.g., differential manifolds, common system of coordinates, vector space structure, or translation-equivariance, along with basic operations like convolution, in non-Euclidean space are not distinctly established. Geometric deep learning (GDL) refers to a category of machine learning methods that utilize deep neural models to process and analyze data in non-Euclidean settings, such as graphs and manifolds. This emerging field seeks to expand the use of structured models to these domains. This review provides a detailed summary of the latest developments in designing and predicting AMPs utilizing GDL techniques and also discusses both current research gaps and future directions in the field.

Abstract Image

几何深度学习作为抗菌肽预测的潜在工具。
抗菌肽(AMPs)是抵御病原体入侵的天然免疫成分。它们是能折叠成各种三维结构的聚合物,其基本序列最好在非平面空间中表示,从而实现其功能。AMPs 的结构数据表现出非欧几里得特征,这意味着在非欧几里得空间中,某些属性,如微分流形、共同坐标系、矢量空间结构或平移-方差,以及卷积等基本操作,并没有明确建立起来。几何深度学习(GDL)是指一类利用深度神经模型在非欧几里得环境(如图和流形)中处理和分析数据的机器学习方法。这一新兴领域旨在将结构化模型的使用扩展到这些领域。本综述详细总结了利用 GDL 技术设计和预测 AMP 的最新进展,并讨论了该领域当前的研究差距和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信