Richard Adam, Kevin Dell'Aquila, Laura Hodges, Takouhie Maldjian, Tim Q Duong
{"title":"Deep learning applications to breast cancer detection by magnetic resonance imaging: a literature review.","authors":"Richard Adam, Kevin Dell'Aquila, Laura Hodges, Takouhie Maldjian, Tim Q Duong","doi":"10.1186/s13058-023-01687-4","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning analysis of radiological images has the potential to improve diagnostic accuracy of breast cancer, ultimately leading to better patient outcomes. This paper systematically reviewed the current literature on deep learning detection of breast cancer based on magnetic resonance imaging (MRI). The literature search was performed from 2015 to Dec 31, 2022, using Pubmed. Other database included Semantic Scholar, ACM Digital Library, Google search, Google Scholar, and pre-print depositories (such as Research Square). Articles that were not deep learning (such as texture analysis) were excluded. PRISMA guidelines for reporting were used. We analyzed different deep learning algorithms, methods of analysis, experimental design, MRI image types, types of ground truths, sample sizes, numbers of benign and malignant lesions, and performance in the literature. We discussed lessons learned, challenges to broad deployment in clinical practice and suggested future research directions.</p>","PeriodicalId":9283,"journal":{"name":"Breast Cancer Research : BCR","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10367400/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research : BCR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13058-023-01687-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Deep learning analysis of radiological images has the potential to improve diagnostic accuracy of breast cancer, ultimately leading to better patient outcomes. This paper systematically reviewed the current literature on deep learning detection of breast cancer based on magnetic resonance imaging (MRI). The literature search was performed from 2015 to Dec 31, 2022, using Pubmed. Other database included Semantic Scholar, ACM Digital Library, Google search, Google Scholar, and pre-print depositories (such as Research Square). Articles that were not deep learning (such as texture analysis) were excluded. PRISMA guidelines for reporting were used. We analyzed different deep learning algorithms, methods of analysis, experimental design, MRI image types, types of ground truths, sample sizes, numbers of benign and malignant lesions, and performance in the literature. We discussed lessons learned, challenges to broad deployment in clinical practice and suggested future research directions.