Feeding in mixoplankton enhances phototrophy increasing bloom-induced pH changes with ocean acidification.

IF 1.9 3区 环境科学与生态学 Q2 MARINE & FRESHWATER BIOLOGY
Kevin J Flynn, Aditee Mitra
{"title":"Feeding in mixoplankton enhances phototrophy increasing bloom-induced pH changes with ocean acidification.","authors":"Kevin J Flynn,&nbsp;Aditee Mitra","doi":"10.1093/plankt/fbad030","DOIUrl":null,"url":null,"abstract":"<p><p>Plankton phototrophy consumes CO<sub>2</sub>, increasing seawater pH, while heterotrophy does the converse. Elevation of pH (>8.5) during coastal blooms becomes increasingly deleterious for plankton. Mixoplankton, which can be important bloom-formers, engage in both photoautotrophy and phagoheterotrophy; in theory, this activity could create a relatively stable pH environment for plankton growth. Using a systems biology modelling approach, we explored whether different mixoplankton functional groups could modulate the environmental pH compared to the extreme activities of phototrophic phytoplankton and heterotrophic zooplankton. Activities by most mixoplankton groups do not stabilize seawater pH. Through access to additional nutrient streams from internal recycling with phagotrophy, mixoplankton phototrophy is enhanced, elevating pH; this is especially so for constitutive and plastidic specialist non-constitutive mixoplankton. Mixoplankton blooms can exceed the size of phytoplankton blooms; the synergisms of mixoplankton physiology, accessing nutrition via phagotrophy as well as from inorganic sources, enhance or augment primary production rather than depressing it. Ocean acidification will thus enable larger coastal mixoplankton blooms to form before basification becomes detrimental. The dynamics of such bloom developments will depend on whether the mixoplankton are consuming heterotrophs and/or phototrophs and how the plankton community succession evolves.</p>","PeriodicalId":16800,"journal":{"name":"Journal of Plankton Research","volume":"45 4","pages":"636-651"},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361812/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plankton Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/plankt/fbad030","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Plankton phototrophy consumes CO2, increasing seawater pH, while heterotrophy does the converse. Elevation of pH (>8.5) during coastal blooms becomes increasingly deleterious for plankton. Mixoplankton, which can be important bloom-formers, engage in both photoautotrophy and phagoheterotrophy; in theory, this activity could create a relatively stable pH environment for plankton growth. Using a systems biology modelling approach, we explored whether different mixoplankton functional groups could modulate the environmental pH compared to the extreme activities of phototrophic phytoplankton and heterotrophic zooplankton. Activities by most mixoplankton groups do not stabilize seawater pH. Through access to additional nutrient streams from internal recycling with phagotrophy, mixoplankton phototrophy is enhanced, elevating pH; this is especially so for constitutive and plastidic specialist non-constitutive mixoplankton. Mixoplankton blooms can exceed the size of phytoplankton blooms; the synergisms of mixoplankton physiology, accessing nutrition via phagotrophy as well as from inorganic sources, enhance or augment primary production rather than depressing it. Ocean acidification will thus enable larger coastal mixoplankton blooms to form before basification becomes detrimental. The dynamics of such bloom developments will depend on whether the mixoplankton are consuming heterotrophs and/or phototrophs and how the plankton community succession evolves.

Abstract Image

Abstract Image

Abstract Image

混合浮游生物的摄食增强了光养性,增加了水华引起的pH随海洋酸化的变化。
光养浮游生物消耗二氧化碳,增加海水pH值,而异养浮游生物则相反。沿海水华期间pH值升高(>8.5)对浮游生物的危害越来越大。混合型浮游生物是重要的成花生物,既进行光自养,也进行吞噬异养;理论上,这种活动可以为浮游生物的生长创造一个相对稳定的pH环境。利用系统生物学建模方法,我们探讨了不同的混合浮游生物功能群是否可以调节环境pH值,并与光养浮游植物和异养浮游动物的极端活动进行了比较。大多数混合浮游生物的活动不能稳定海水pH。通过通过内部循环获得额外的营养物质流,混合浮游生物的光养性得到增强,pH值升高;这对于本构和塑性的非本构混合浮游生物来说尤其如此。混合浮游生物的华度可以超过浮游植物的华度;混合浮游生物生理的协同作用,通过吞噬和从无机来源获取营养,增强或增加初级生产,而不是抑制初级生产。因此,海洋酸化将使更大的沿海混合浮游生物在碱化变得有害之前形成。这种水华发展的动态将取决于混合浮游生物是否消耗异养和/或光养生物,以及浮游生物群落演替如何演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plankton Research
Journal of Plankton Research 生物-海洋学
CiteScore
3.50
自引率
9.50%
发文量
65
审稿时长
1 months
期刊介绍: Journal of Plankton Research publishes innovative papers that significantly advance the field of plankton research, and in particular, our understanding of plankton dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信