Continuous-Time Surrogate Models for Data-Driven Dynamic Optimization.

Burcu Beykal, Nikolaos A Diangelakis, Efstratios N Pistikopoulos
{"title":"Continuous-Time Surrogate Models for Data-Driven Dynamic Optimization.","authors":"Burcu Beykal,&nbsp;Nikolaos A Diangelakis,&nbsp;Efstratios N Pistikopoulos","doi":"10.1016/b978-0-323-95879-0.50035-7","DOIUrl":null,"url":null,"abstract":"<p><p>This work addresses the control optimization of time-varying systems without the full discretization of the underlying high-fidelity models and derives optimal control trajectories using surrogate modeling and data-driven optimization. Time-varying systems are ubiquitous in the chemical process industry and their systematic control is essential for ensuring each system to be operated at the desired settings. To this end, we postulate nonlinear continuous-time control action trajectories using time-varying surrogate models and derive the parameters of these functional forms using data-driven optimization. Data-driven optimization allows us to collect data from the high-fidelity model without pursuing any discretization and fine-tune candidate control trajectories based on the retrieved input-output information from the nonlinear system. We test exponential and polynomial surrogate forms for the control trajectories and explore various data-driven optimization strategies (local vs. global and sample-based vs. model-based) to test the consistency of each approach for controlling dynamic systems. The applicability of our approach is demonstrated on a motivating example and a CSTR control case study with favorable results.</p>","PeriodicalId":72950,"journal":{"name":"ESCAPE. European Symposium on Computer Aided Process Engineering","volume":"51 ","pages":"205-210"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823268/pdf/nihms-1861335.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESCAPE. European Symposium on Computer Aided Process Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/b978-0-323-95879-0.50035-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work addresses the control optimization of time-varying systems without the full discretization of the underlying high-fidelity models and derives optimal control trajectories using surrogate modeling and data-driven optimization. Time-varying systems are ubiquitous in the chemical process industry and their systematic control is essential for ensuring each system to be operated at the desired settings. To this end, we postulate nonlinear continuous-time control action trajectories using time-varying surrogate models and derive the parameters of these functional forms using data-driven optimization. Data-driven optimization allows us to collect data from the high-fidelity model without pursuing any discretization and fine-tune candidate control trajectories based on the retrieved input-output information from the nonlinear system. We test exponential and polynomial surrogate forms for the control trajectories and explore various data-driven optimization strategies (local vs. global and sample-based vs. model-based) to test the consistency of each approach for controlling dynamic systems. The applicability of our approach is demonstrated on a motivating example and a CSTR control case study with favorable results.

Abstract Image

Abstract Image

数据驱动动态优化的连续时间代理模型。
这项工作解决了时变系统的控制优化,而没有完全离散化潜在的高保真模型,并使用代理建模和数据驱动优化导出最优控制轨迹。时变系统在化学过程工业中无处不在,它们的系统控制对于确保每个系统在期望的设置下运行至关重要。为此,我们使用时变代理模型假设非线性连续时间控制动作轨迹,并使用数据驱动优化推导这些函数形式的参数。数据驱动优化使我们能够从高保真模型中收集数据,而无需进行任何离散化,并根据从非线性系统中检索到的输入-输出信息微调候选控制轨迹。我们测试了控制轨迹的指数和多项式代理形式,并探索了各种数据驱动的优化策略(局部vs全局,基于样本vs基于模型),以测试每种方法控制动态系统的一致性。我们的方法的适用性在一个激励的例子和CSTR控制案例研究中得到了良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信