Formation of aggresomes with hydrogel-like characteristics by proteasome inhibition

IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Seo Hyeong Park , Sang-Eun Lee , Jun Hyoung Jeon , Jung Hoon Lee , Eisuke Itakura , Sunghoe Chang , Won Hoon Choi , Min Jae Lee
{"title":"Formation of aggresomes with hydrogel-like characteristics by proteasome inhibition","authors":"Seo Hyeong Park ,&nbsp;Sang-Eun Lee ,&nbsp;Jun Hyoung Jeon ,&nbsp;Jung Hoon Lee ,&nbsp;Eisuke Itakura ,&nbsp;Sunghoe Chang ,&nbsp;Won Hoon Choi ,&nbsp;Min Jae Lee","doi":"10.1016/j.bbagrm.2023.194932","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The spatiotemporal sequestration of misfolded proteins is a mechanism by which cells counterbalance proteome </span>homeostasis<span> upon exposure to various stress stimuli. Chronic inhibition of proteasomes results in a large, juxtanuclear, membrane-less inclusion, known as the </span></span>aggresome<span>. Although the molecular mechanisms driving its formation, clearance, and pathophysiological implications are continuously being uncovered, the biophysical aspects of aggresomes remain largely uncharacterized. Using fluorescence recovery after photobleaching and liquid droplet disruption assays, we found that the aggresomes are a homogeneously blended condensates with liquid-like properties similar to droplets formed via liquid–liquid phase separation. However, unlike fluidic liquid droplets, aggresomes have more viscosity and hydrogel-like characteristics. We also observed that the inhibition of aggresome formation using microtubule-disrupting agents resulted in less soluble and smaller cytoplasmic speckles, which was associated with marked cytotoxicity. Therefore, the aggresome appears to be cytoprotective and serves as a temporal reservoir for dysfunctional proteasomes and substrates that need to be degraded. Our results suggest that the aggresome assembles through distinct and potentially sequential processes of energy-dependent retrograde transportation and spontaneous condensation into a hydrogel.</span></p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 2","pages":"Article 194932"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874939923000275","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

The spatiotemporal sequestration of misfolded proteins is a mechanism by which cells counterbalance proteome homeostasis upon exposure to various stress stimuli. Chronic inhibition of proteasomes results in a large, juxtanuclear, membrane-less inclusion, known as the aggresome. Although the molecular mechanisms driving its formation, clearance, and pathophysiological implications are continuously being uncovered, the biophysical aspects of aggresomes remain largely uncharacterized. Using fluorescence recovery after photobleaching and liquid droplet disruption assays, we found that the aggresomes are a homogeneously blended condensates with liquid-like properties similar to droplets formed via liquid–liquid phase separation. However, unlike fluidic liquid droplets, aggresomes have more viscosity and hydrogel-like characteristics. We also observed that the inhibition of aggresome formation using microtubule-disrupting agents resulted in less soluble and smaller cytoplasmic speckles, which was associated with marked cytotoxicity. Therefore, the aggresome appears to be cytoprotective and serves as a temporal reservoir for dysfunctional proteasomes and substrates that need to be degraded. Our results suggest that the aggresome assembles through distinct and potentially sequential processes of energy-dependent retrograde transportation and spontaneous condensation into a hydrogel.

通过蛋白酶体抑制形成具有水凝胶特征的聚合体
错误折叠蛋白的时空隔离是细胞在暴露于各种应激刺激时平衡蛋白质组稳态的一种机制。蛋白酶体的慢性抑制导致一个大的,核旁的,无膜的包涵体,称为聚集体。尽管驱动其形成、清除和病理生理意义的分子机制不断被发现,但聚合体的生物物理方面在很大程度上仍未被表征。通过光漂白后的荧光恢复和液滴破坏实验,我们发现聚合体是一种均匀混合的凝聚体,具有类似于液-液相分离形成的液滴的液体性质。然而,与流体液滴不同,聚合体具有更多的粘度和水凝胶样特性。我们还观察到,微管破坏剂对聚合体形成的抑制导致可溶性更少、细胞质斑点更小,这与显著的细胞毒性有关。因此,聚集体似乎具有细胞保护作用,并作为功能失调的蛋白酶体和需要降解的底物的临时储存库。我们的研究结果表明,聚合体通过不同的和潜在的顺序的能量依赖逆行运输和自发凝聚成水凝胶的过程进行组装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
2.10%
发文量
63
审稿时长
44 days
期刊介绍: BBA Gene Regulatory Mechanisms includes reports that describe novel insights into mechanisms of transcriptional, post-transcriptional and translational gene regulation. Special emphasis is placed on papers that identify epigenetic mechanisms of gene regulation, including chromatin, modification, and remodeling. This section also encompasses mechanistic studies of regulatory proteins and protein complexes; regulatory or mechanistic aspects of RNA processing; regulation of expression by small RNAs; genomic analysis of gene expression patterns; and modeling of gene regulatory pathways. Papers describing gene promoters, enhancers, silencers or other regulatory DNA regions must incorporate significant functions studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信