A study of ψ-Hilfer fractional differential system with application in financial crisis

Q1 Mathematics
Fatemeh Norouzi , Gaston M. N’Guérékata
{"title":"A study of ψ-Hilfer fractional differential system with application in financial crisis","authors":"Fatemeh Norouzi ,&nbsp;Gaston M. N’Guérékata","doi":"10.1016/j.csfx.2021.100056","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers the fractional-order system in the sense of <span><math><mi>ψ</mi></math></span>-Hilfer fractional differential equations. In order to investigate the existence and uniqueness of the mild solution, the Banach contraction mapping principle and the measure of non-compactness are applied. As an application, the financial crisis model in the sense of <span><math><mi>ψ</mi></math></span>-Hilfer fractional differential equation will be used to prove the existence of solution and global stability of it. In addition, to illustrate the feasibility and validity of our results, the numerical simulation of the financial crisis model in the sense of Caputo will be shown in four different cases. Our results indicate that for non-integer order, the system behaves to be asymptotically stable and periodic (chaotic) at a certain limit order and the other part stabilizes to a fixed point.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"6 ","pages":"Article 100056"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2021.100056","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054421000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 10

Abstract

This paper considers the fractional-order system in the sense of ψ-Hilfer fractional differential equations. In order to investigate the existence and uniqueness of the mild solution, the Banach contraction mapping principle and the measure of non-compactness are applied. As an application, the financial crisis model in the sense of ψ-Hilfer fractional differential equation will be used to prove the existence of solution and global stability of it. In addition, to illustrate the feasibility and validity of our results, the numerical simulation of the financial crisis model in the sense of Caputo will be shown in four different cases. Our results indicate that for non-integer order, the system behaves to be asymptotically stable and periodic (chaotic) at a certain limit order and the other part stabilizes to a fixed point.

ψ-Hilfer分数阶微分系统及其在金融危机中的应用研究
本文从ψ-Hilfer分数阶微分方程的意义上考虑分数阶系统。为了研究温和解的存在唯一性,应用了Banach收缩映射原理和非紧性度量。作为一种应用,本文将利用ψ-Hilfer分数阶微分方程意义上的金融危机模型来证明其解的存在性和全局稳定性。此外,为了说明我们的结果的可行性和有效性,在卡普托意义上的金融危机模型的数值模拟将显示在四个不同的情况下。结果表明,对于非整数阶,系统在某极限阶表现为渐近稳定和周期(混沌),另一部分稳定到不动点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信