{"title":"Self-micellizing solid dispersion of tacrolimus: Physicochemical and pharmacokinetic characterization","authors":"Keisuke Makino, Ryota Tsukada, Atsushi Kambayashi, Kohei Yamada, Hideyuki Sato, Satomi Onoue","doi":"10.1002/bdd.2373","DOIUrl":null,"url":null,"abstract":"<p>The present study was undertaken to develop a self-micellizing solid dispersion (SMSD) of tacrolimus (TAC) to improve the biopharmaceutical properties of TAC. An SMSD formulation of TAC (SMSD/TAC) and amorphous solid dispersion formulation of TAC (ASD/TAC) were prepared with Soluplus<sup>®</sup>, an amphiphilic copolymer, and hydroxypropyl cellulose, respectively. Physicochemical properties were characterized in terms of morphology, crystallinity, storage stability, interaction of TAC with Soluplus<sup>®</sup>, and micelle-forming potency; pharmacokinetic behavior was also evaluated in rats. Tacrolimus in both formulations was in an amorphous state. After storage at 40°C/75% relativity humidity for 4 weeks, there were no significant changes in the crystallinity of TAC between nonaged and aged SMSD/TAC, whereas slight recrystallization was observed in aged ASD/TAC. The results of circular dichroism (CD) and infrared spectroscopic analyses were indicative of the potent drug–polymer interaction in SMSD/TAC, possibly leading to the prevention of recrystallization. Compared with other TAC samples, SMSD/TAC exhibited significant improvement in the dissolution behavior of TAC through the immediate formation of fine micelles. After the oral administration of TAC samples (10 mg TAC/kg) to rats, there was marked enhancement in systemic exposure to TAC with both formulations; in particular, SMSD/TAC achieved an increase in bioavailability ca. 20-fold higher than crystalline TAC. The SMSD approach might provide an effective dosage form for TAC with enhanced physicochemical stability and oral absorption.</p>","PeriodicalId":8865,"journal":{"name":"Biopharmaceutics & Drug Disposition","volume":"44 6","pages":"387-395"},"PeriodicalIF":1.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopharmaceutics & Drug Disposition","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2373","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study was undertaken to develop a self-micellizing solid dispersion (SMSD) of tacrolimus (TAC) to improve the biopharmaceutical properties of TAC. An SMSD formulation of TAC (SMSD/TAC) and amorphous solid dispersion formulation of TAC (ASD/TAC) were prepared with Soluplus®, an amphiphilic copolymer, and hydroxypropyl cellulose, respectively. Physicochemical properties were characterized in terms of morphology, crystallinity, storage stability, interaction of TAC with Soluplus®, and micelle-forming potency; pharmacokinetic behavior was also evaluated in rats. Tacrolimus in both formulations was in an amorphous state. After storage at 40°C/75% relativity humidity for 4 weeks, there were no significant changes in the crystallinity of TAC between nonaged and aged SMSD/TAC, whereas slight recrystallization was observed in aged ASD/TAC. The results of circular dichroism (CD) and infrared spectroscopic analyses were indicative of the potent drug–polymer interaction in SMSD/TAC, possibly leading to the prevention of recrystallization. Compared with other TAC samples, SMSD/TAC exhibited significant improvement in the dissolution behavior of TAC through the immediate formation of fine micelles. After the oral administration of TAC samples (10 mg TAC/kg) to rats, there was marked enhancement in systemic exposure to TAC with both formulations; in particular, SMSD/TAC achieved an increase in bioavailability ca. 20-fold higher than crystalline TAC. The SMSD approach might provide an effective dosage form for TAC with enhanced physicochemical stability and oral absorption.
期刊介绍:
Biopharmaceutics & Drug Dispositionpublishes original review articles, short communications, and reports in biopharmaceutics, drug disposition, pharmacokinetics and pharmacodynamics, especially those that have a direct relation to the drug discovery/development and the therapeutic use of drugs. These includes:
- animal and human pharmacological studies that focus on therapeutic response. pharmacodynamics, and toxicity related to plasma and tissue concentrations of drugs and their metabolites,
- in vitro and in vivo drug absorption, distribution, metabolism, transport, and excretion studies that facilitate investigations related to the use of drugs in man
- studies on membrane transport and enzymes, including their regulation and the impact of pharmacogenomics on drug absorption and disposition,
- simulation and modeling in drug discovery and development
- theoretical treatises
- includes themed issues and reviews
and exclude manuscripts on
- bioavailability studies reporting only on simple PK parameters such as Cmax, tmax and t1/2 without mechanistic interpretation
- analytical methods