Mustapha Cherifi , Ganming He , Victor Mastrangelo , Michèle Mastrangelo , Marcelo Piva , Susana Gabbanelli , Marta Rosen , José Eduardo Wesfried
{"title":"Caractérisation de la dispersion avec un modèle fractionnaire","authors":"Mustapha Cherifi , Ganming He , Victor Mastrangelo , Michèle Mastrangelo , Marcelo Piva , Susana Gabbanelli , Marta Rosen , José Eduardo Wesfried","doi":"10.1016/S1251-8069(97)86949-7","DOIUrl":null,"url":null,"abstract":"<div><p>We use the fractional dispersion concept to analyse the anomalous diffusion regime shown in a tracer dispersion in a hydrodynamical Taylor-Couette experiment. The anomalous diffusion is characterized with a parameter a (diffusion exponent), equal to two for the Gaussian diffusion. The results of the fractional advection-diffusion equa lion are compared to the concentration curves of the residence time distributions obtained in the experiment and to those from a coupled advection-diffusion model. The diffusion exponent, the generalized diffusion coefficient and the axial velocity are evaluated by fit.</p></div>","PeriodicalId":100304,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","volume":"326 1","pages":"Pages 27-32"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1251-8069(97)86949-7","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1251806997869497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We use the fractional dispersion concept to analyse the anomalous diffusion regime shown in a tracer dispersion in a hydrodynamical Taylor-Couette experiment. The anomalous diffusion is characterized with a parameter a (diffusion exponent), equal to two for the Gaussian diffusion. The results of the fractional advection-diffusion equa lion are compared to the concentration curves of the residence time distributions obtained in the experiment and to those from a coupled advection-diffusion model. The diffusion exponent, the generalized diffusion coefficient and the axial velocity are evaluated by fit.