Caractérisation de la dispersion avec un modèle fractionnaire

Mustapha Cherifi , Ganming He , Victor Mastrangelo , Michèle Mastrangelo , Marcelo Piva , Susana Gabbanelli , Marta Rosen , José Eduardo Wesfried
{"title":"Caractérisation de la dispersion avec un modèle fractionnaire","authors":"Mustapha Cherifi ,&nbsp;Ganming He ,&nbsp;Victor Mastrangelo ,&nbsp;Michèle Mastrangelo ,&nbsp;Marcelo Piva ,&nbsp;Susana Gabbanelli ,&nbsp;Marta Rosen ,&nbsp;José Eduardo Wesfried","doi":"10.1016/S1251-8069(97)86949-7","DOIUrl":null,"url":null,"abstract":"<div><p>We use the fractional dispersion concept to analyse the anomalous diffusion regime shown in a tracer dispersion in a hydrodynamical Taylor-Couette experiment. The anomalous diffusion is characterized with a parameter a (diffusion exponent), equal to two for the Gaussian diffusion. The results of the fractional advection-diffusion equa lion are compared to the concentration curves of the residence time distributions obtained in the experiment and to those from a coupled advection-diffusion model. The diffusion exponent, the generalized diffusion coefficient and the axial velocity are evaluated by fit.</p></div>","PeriodicalId":100304,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","volume":"326 1","pages":"Pages 27-32"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1251-8069(97)86949-7","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1251806997869497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We use the fractional dispersion concept to analyse the anomalous diffusion regime shown in a tracer dispersion in a hydrodynamical Taylor-Couette experiment. The anomalous diffusion is characterized with a parameter a (diffusion exponent), equal to two for the Gaussian diffusion. The results of the fractional advection-diffusion equa lion are compared to the concentration curves of the residence time distributions obtained in the experiment and to those from a coupled advection-diffusion model. The diffusion exponent, the generalized diffusion coefficient and the axial velocity are evaluated by fit.

用分数模型表征色散
我们使用分数色散的概念来分析在流体动力学泰勒-库埃特实验中示踪色散所显示的异常扩散制度。反常扩散用参数a(扩散指数)来表征,对于高斯扩散,参数a等于2。将分数阶平流扩散方程的计算结果与实验得到的停留时间分布浓度曲线以及平流扩散耦合模型的计算结果进行了比较。通过拟合求出扩散指数、广义扩散系数和轴向速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信