Predicting risk of metastases and recurrence in soft-tissue sarcomas via Radiomics and Formal Methods.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES
Roberto Casale, Giulia Varriano, Antonella Santone, Carmelo Messina, Chiara Casale, Salvatore Gitto, Luca Maria Sconfienza, Maria Antonietta Bali, Luca Brunese
{"title":"Predicting risk of metastases and recurrence in soft-tissue sarcomas via Radiomics and Formal Methods.","authors":"Roberto Casale,&nbsp;Giulia Varriano,&nbsp;Antonella Santone,&nbsp;Carmelo Messina,&nbsp;Chiara Casale,&nbsp;Salvatore Gitto,&nbsp;Luca Maria Sconfienza,&nbsp;Maria Antonietta Bali,&nbsp;Luca Brunese","doi":"10.1093/jamiaopen/ooad025","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Soft-tissue sarcomas (STSs) of the extremities are a group of malignancies arising from the mesenchymal cells that may develop distant metastases or local recurrence. In this article, we propose a novel methodology aimed to predict metastases and recurrence risk in patients with these malignancies by evaluating magnetic resonance radiomic features that will be formally verified through formal logic models.</p><p><strong>Materials and methods: </strong>This is a retrospective study based on a public dataset evaluating MRI scans T2-weighted fat-saturated or short tau inversion recovery and patients having \"metastases/local recurrence\" (group B) or \"no metastases/no local recurrence\" (group A) as clinical outcomes. Once radiomic features are extracted, they are included in formal models, on which is automatically verified the logic property written by a radiologist and his computer scientists coworkers.</p><p><strong>Results: </strong>Evaluating the Formal Methods efficacy in predicting distant metastases/local recurrence in STSs (group A vs group B), our methodology showed a sensitivity and specificity of 0.81 and 0.67, respectively; this suggests that radiomics and formal verification may be useful in predicting future metastases or local recurrence development in soft tissue sarcoma.</p><p><strong>Discussion: </strong>Authors discussed about the literature to consider Formal Methods as a valid alternative to other Artificial Intelligence techniques.</p><p><strong>Conclusions: </strong>An innovative and noninvasive rigourous methodology can be significant in predicting local recurrence and metastases development in STSs. Future works can be the assessment on multicentric studies to extract objective disease information, enriching the connection between the radiomic quantitative analysis and the radiological clinical evidences.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"6 2","pages":"ooad025"},"PeriodicalIF":2.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10097456/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooad025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 1

Abstract

Objective: Soft-tissue sarcomas (STSs) of the extremities are a group of malignancies arising from the mesenchymal cells that may develop distant metastases or local recurrence. In this article, we propose a novel methodology aimed to predict metastases and recurrence risk in patients with these malignancies by evaluating magnetic resonance radiomic features that will be formally verified through formal logic models.

Materials and methods: This is a retrospective study based on a public dataset evaluating MRI scans T2-weighted fat-saturated or short tau inversion recovery and patients having "metastases/local recurrence" (group B) or "no metastases/no local recurrence" (group A) as clinical outcomes. Once radiomic features are extracted, they are included in formal models, on which is automatically verified the logic property written by a radiologist and his computer scientists coworkers.

Results: Evaluating the Formal Methods efficacy in predicting distant metastases/local recurrence in STSs (group A vs group B), our methodology showed a sensitivity and specificity of 0.81 and 0.67, respectively; this suggests that radiomics and formal verification may be useful in predicting future metastases or local recurrence development in soft tissue sarcoma.

Discussion: Authors discussed about the literature to consider Formal Methods as a valid alternative to other Artificial Intelligence techniques.

Conclusions: An innovative and noninvasive rigourous methodology can be significant in predicting local recurrence and metastases development in STSs. Future works can be the assessment on multicentric studies to extract objective disease information, enriching the connection between the radiomic quantitative analysis and the radiological clinical evidences.

Abstract Image

Abstract Image

Abstract Image

通过放射组学和正规方法预测软组织肉瘤转移和复发的风险。
目的:四肢软组织肉瘤(STSs)是一类起源于间充质细胞的恶性肿瘤,可发生远处转移或局部复发。在本文中,我们提出了一种新的方法,旨在通过评估磁共振放射学特征来预测这些恶性肿瘤患者的转移和复发风险,这些特征将通过形式化逻辑模型进行正式验证。材料和方法:这是一项基于公共数据集的回顾性研究,评估MRI扫描t2加权脂肪饱和或短tau反转恢复以及“转移/局部复发”(B组)或“无转移/局部复发”(a组)患者的临床结果。一旦放射学特征被提取出来,它们就被包含在正式的模型中,在模型上自动验证由放射科医生和他的计算机科学家同事编写的逻辑属性。结果:评估正式方法预测STSs远处转移/局部复发的有效性(A组与B组),我们的方法的敏感性和特异性分别为0.81和0.67;这表明放射组学和正式验证可能有助于预测软组织肉瘤的未来转移或局部复发发展。讨论:作者讨论了将形式化方法视为其他人工智能技术的有效替代方案的文献。结论:一种创新的、无创的、严谨的方法在预测STSs局部复发和转移发展方面具有重要意义。未来的工作可以是对多中心研究进行评估,提取客观的疾病信息,丰富放射学定量分析与放射学临床证据之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信