Ezaz Ahmad , Anirban Mitra , Wareed Ahmed , Varsha Mahapatra , Shubhada R. Hegde , Claudia Sala , Stewart T. Cole , Valakunja Nagaraja
{"title":"Rho-dependent transcription termination is the dominant mechanism in Mycobacterium tuberculosis","authors":"Ezaz Ahmad , Anirban Mitra , Wareed Ahmed , Varsha Mahapatra , Shubhada R. Hegde , Claudia Sala , Stewart T. Cole , Valakunja Nagaraja","doi":"10.1016/j.bbagrm.2023.194923","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Intrinsic and Rho-dependent transcription termination mechanisms regulate gene expression and recycle </span>RNA polymerase in bacteria. Both the modes are well studied in </span><em>Escherichia coli</em><span>, and a few other organisms. The understanding of Rho function is limited in most other bacteria including mycobacteria. Here, we highlight the dominance of Rho-dependent termination in mycobacteria and validate Rho as a key regulatory factor. The lower abundance of intrinsic terminators, high cellular levels of Rho, and its genome-wide association with a majority of transcriptionally active genes indicate the pronounced role of Rho-mediated termination in </span><span><em>Mycobacterium tuberculosis</em></span> (<em>Mtb</em><span>). Rho modulates the termination of RNA synthesis<span> for both protein-coding and stable RNA genes in </span></span><em>Mtb</em><span><span>. Concordantly, the depletion of Rho in mycobacteria impact its growth and enhances the transcription read-through at 3′ ends of the transcription units. We demonstrate that MtbRho is catalytically active in the presence of RNA with varied secondary structures. These properties suggest an evolutionary adaptation of Rho as the efficient and preponderant mode </span>of transcription termination in mycobacteria.</span></p></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1866 2","pages":"Article 194923"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874939923000184","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Intrinsic and Rho-dependent transcription termination mechanisms regulate gene expression and recycle RNA polymerase in bacteria. Both the modes are well studied in Escherichia coli, and a few other organisms. The understanding of Rho function is limited in most other bacteria including mycobacteria. Here, we highlight the dominance of Rho-dependent termination in mycobacteria and validate Rho as a key regulatory factor. The lower abundance of intrinsic terminators, high cellular levels of Rho, and its genome-wide association with a majority of transcriptionally active genes indicate the pronounced role of Rho-mediated termination in Mycobacterium tuberculosis (Mtb). Rho modulates the termination of RNA synthesis for both protein-coding and stable RNA genes in Mtb. Concordantly, the depletion of Rho in mycobacteria impact its growth and enhances the transcription read-through at 3′ ends of the transcription units. We demonstrate that MtbRho is catalytically active in the presence of RNA with varied secondary structures. These properties suggest an evolutionary adaptation of Rho as the efficient and preponderant mode of transcription termination in mycobacteria.
期刊介绍:
BBA Gene Regulatory Mechanisms includes reports that describe novel insights into mechanisms of transcriptional, post-transcriptional and translational gene regulation. Special emphasis is placed on papers that identify epigenetic mechanisms of gene regulation, including chromatin, modification, and remodeling. This section also encompasses mechanistic studies of regulatory proteins and protein complexes; regulatory or mechanistic aspects of RNA processing; regulation of expression by small RNAs; genomic analysis of gene expression patterns; and modeling of gene regulatory pathways. Papers describing gene promoters, enhancers, silencers or other regulatory DNA regions must incorporate significant functions studies.