Respiratory Tract Deposition of E-Cigarette Particles.

IF 4.2 2区 医学 Q1 PHYSIOLOGY
William D Bennett, Phillip W Clapp, Landon T Holbrook, Kirby L Zeman
{"title":"Respiratory Tract Deposition of E-Cigarette Particles.","authors":"William D Bennett,&nbsp;Phillip W Clapp,&nbsp;Landon T Holbrook,&nbsp;Kirby L Zeman","doi":"10.1002/cphy.c210038","DOIUrl":null,"url":null,"abstract":"<p><p>Total and regional deposition of inhaled electronic cigarette (E-cig) particles in the respiratory tract (RT) depends on both physical properties of the inhaled particles and biological factors of users, for example, breathing pattern or puff profile, airway anatomy, and regional ventilation. Accurate particle sizing of E-cig aerosols is essential for predicting particle deposition in the RT. Studies using a variety of sizing methods have shown mass median aerodynamic diameters ranging from 0.2 to 1.2 um and secondary count diameters in the ultrafine range (<0.1 μm). Incorporating these particle sizes into a multiple-path particle dosimetry (MPPD) model shows 10% to 45% total lung deposition by mass and 30% to 80% for ultrafine particles depending on the breathing patterns. These predictions are consistent with experimental measures of deposition fraction of submicron and ultrafine particles. While box-mod-type E-cig devices allow for full \"direct-lung\" inhalations of aerosol, the more recent pod-based, and disposable E-cigs (e.g., JUUL, Puff Bar, Stig) deliver the aerosol as a \"mouth-to-lung\" puff, or bolus, that is inhaled early in the breath followed to various degrees by further inhalation of ambient air. Measurement of realistic ventilation patterns associated with these various devices may further improve deposition predictions. Finally, while in vivo measures of RT deposition present a challenge, a recent methodology to radiolabel E-cig particles may allow for such measurements by gamma scintigraphy. Supported by NIH/NHLBI R01HL139369. © 2022 American Physiological Society. Compr Physiol 12: 1-10, year.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"12 4","pages":"3823-3832"},"PeriodicalIF":4.2000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cphy.c210038","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Total and regional deposition of inhaled electronic cigarette (E-cig) particles in the respiratory tract (RT) depends on both physical properties of the inhaled particles and biological factors of users, for example, breathing pattern or puff profile, airway anatomy, and regional ventilation. Accurate particle sizing of E-cig aerosols is essential for predicting particle deposition in the RT. Studies using a variety of sizing methods have shown mass median aerodynamic diameters ranging from 0.2 to 1.2 um and secondary count diameters in the ultrafine range (<0.1 μm). Incorporating these particle sizes into a multiple-path particle dosimetry (MPPD) model shows 10% to 45% total lung deposition by mass and 30% to 80% for ultrafine particles depending on the breathing patterns. These predictions are consistent with experimental measures of deposition fraction of submicron and ultrafine particles. While box-mod-type E-cig devices allow for full "direct-lung" inhalations of aerosol, the more recent pod-based, and disposable E-cigs (e.g., JUUL, Puff Bar, Stig) deliver the aerosol as a "mouth-to-lung" puff, or bolus, that is inhaled early in the breath followed to various degrees by further inhalation of ambient air. Measurement of realistic ventilation patterns associated with these various devices may further improve deposition predictions. Finally, while in vivo measures of RT deposition present a challenge, a recent methodology to radiolabel E-cig particles may allow for such measurements by gamma scintigraphy. Supported by NIH/NHLBI R01HL139369. © 2022 American Physiological Society. Compr Physiol 12: 1-10, year.

电子烟微粒的呼吸道沉积。
吸入电子烟(e - cigg)颗粒在呼吸道(RT)中的总沉积和局部沉积取决于吸入颗粒的物理特性和使用者的生物因素,例如呼吸方式或抽吸轮廓、气道解剖结构和局部通气。电子烟气溶胶的精确粒度对于预测rt中的颗粒沉积至关重要。使用各种粒度方法的研究表明,质量的空气动力学直径中位数范围为0.2至1.2微米,次级计数直径在超细范围内(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Comprehensive Physiology is the most authoritative and comprehensive collection of physiology information ever assembled, and uses the most powerful features of review journals and electronic reference works to cover the latest key developments in the field, through the most authoritative articles on the subjects covered. This makes Comprehensive Physiology a valued reference work on the evolving science of physiology for both researchers and clinicians. It also provides a useful teaching tool for instructors and an informative resource for medical students and other students in the life and health sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信