Spatial Single-Cell Technologies for Exploring Gastrointestinal Tissue Transcriptome.

IF 4.2 2区 医学 Q1 PHYSIOLOGY
Hyun Min Kang, Jun Hee Lee
{"title":"Spatial Single-Cell Technologies for Exploring Gastrointestinal Tissue Transcriptome.","authors":"Hyun Min Kang, Jun Hee Lee","doi":"10.1002/cphy.c210053","DOIUrl":null,"url":null,"abstract":"<p><p>In the gastrointestinal (GI) system, like in other organ systems, the histological structure is a key determinant of physiological function. Tissues form multiple layers in the GI tract to perform their specialized functions in secretion, absorption, and motility. Even at the single layer, the heterogeneous cell population performs a diverse range of digestive or regulatory functions. Although many details of such functions at the histological and cell biological levels were revealed by traditional methods such as cell sorting, isolation, and culture, as well as histological methods such as immunostaining and RNA in situ hybridization, recent advances in spatial single-cell technologies could further contribute to our understanding of the molecular makeup of GI histological structures by providing a genome-wide overview of how different genes are expressed across individual cells and tissue layers. The current minireview summarizes recent advances in the spatial transcriptomics field and discusses how such technologies can promote our understanding of GI physiology. © 2023 American Physiological Society. Compr Physiol 13:4709-4718, 2023.</p>","PeriodicalId":10573,"journal":{"name":"Comprehensive Physiology","volume":"13 3","pages":"4709-4718"},"PeriodicalIF":4.2000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386894/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cphy.c210053","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the gastrointestinal (GI) system, like in other organ systems, the histological structure is a key determinant of physiological function. Tissues form multiple layers in the GI tract to perform their specialized functions in secretion, absorption, and motility. Even at the single layer, the heterogeneous cell population performs a diverse range of digestive or regulatory functions. Although many details of such functions at the histological and cell biological levels were revealed by traditional methods such as cell sorting, isolation, and culture, as well as histological methods such as immunostaining and RNA in situ hybridization, recent advances in spatial single-cell technologies could further contribute to our understanding of the molecular makeup of GI histological structures by providing a genome-wide overview of how different genes are expressed across individual cells and tissue layers. The current minireview summarizes recent advances in the spatial transcriptomics field and discusses how such technologies can promote our understanding of GI physiology. © 2023 American Physiological Society. Compr Physiol 13:4709-4718, 2023.

探索胃肠道组织转录组的空间单细胞技术。
在胃肠道(GI)系统中,与其他器官系统一样,组织学结构是决定生理功能的关键因素。组织在胃肠道中形成多层,以发挥其分泌、吸收和蠕动的专门功能。即使在单层组织中,异质细胞群也能发挥多种消化或调节功能。尽管细胞分选、分离和培养等传统方法以及免疫染色和 RNA 原位杂交等组织学方法揭示了组织学和细胞生物学层面上此类功能的许多细节,但空间单细胞技术的最新进展可以提供不同基因如何在单个细胞和组织层之间表达的全基因组概览,从而进一步促进我们对消化道组织学结构的分子构成的理解。本期小视图总结了空间转录组学领域的最新进展,并讨论了此类技术如何促进我们对消化道生理学的理解。© 2023 美国生理学会。Compr Physiol 13:4709-4718, 2023.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Comprehensive Physiology is the most authoritative and comprehensive collection of physiology information ever assembled, and uses the most powerful features of review journals and electronic reference works to cover the latest key developments in the field, through the most authoritative articles on the subjects covered. This makes Comprehensive Physiology a valued reference work on the evolving science of physiology for both researchers and clinicians. It also provides a useful teaching tool for instructors and an informative resource for medical students and other students in the life and health sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信