Akshat D. Modi , Areej Naim Khan , Wing Yan Elizabeth Cheng , Dharmeshkumar M. Modi
{"title":"KCCs, NKCCs, and NCC: Potential targets for cardiovascular therapeutics? A comprehensive review of cell and region specific expression and function","authors":"Akshat D. Modi , Areej Naim Khan , Wing Yan Elizabeth Cheng , Dharmeshkumar M. Modi","doi":"10.1016/j.acthis.2023.152045","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Cardiovascular diseases, the leading life-threatening conditions, involve cardiac arrhythmia, coronary artery disease, myocardial infarction, heart failure, cardiomyopathy, and heart valve disease that are associated with the altered functioning of cation-chloride </span>cotransporters. The decreased number of cation-chloride cotransporters leads to reduced reactivity to </span>adrenergic stimulation<span><span>. The KCC family is crucial for numerous physiological processes<span> including cell proliferation and invasion, regulation of membrane trafficking, maintaining ionic and osmotic </span></span>homeostasis<span>, erythrocyte swelling, dendritic spine<span> formation, maturation of postsynaptic GABAergic inhibition, and inhibitory/excitatory signaling in neural tracts. KCC2 maintains intracellular chlorine homeostasis and opposes β-adrenergic stimulation-induced Cl- influx to prevent arrhythmogenesis. KCC3-inactivated cardiac tissue shows increased </span></span></span></span>vascular resistance<span><span>, aortic distensibility, heart size and weight (i.e. hypertrophic cardiomyopathy). Due to KCC4’s high affinity for K+, it plays a vital role in cardiac ischemia<span> with increased extracellular K+. The NKCC and NCC families play a vital role in the regulation of saliva volume, establishing the potassium-rich endolymph in the cochlea, sodium uptake in astrocytes, inhibiting </span></span>myogenic response<span><span><span> in microcirculatory beds, regulation of smooth muscle tone<span> in resistance vessels, and blood pressure. NKCC1 regulates chlorine homeostasis and knocking it out impairs cardiomyocyte depolarization and </span></span>cardiac contractility<span><span> as well as impairs depolarization and contractility of </span>vascular smooth muscle rings in the aorta. The activation of NCC in vascular cells promotes the formation of the </span></span>abdominal aortic aneurysm<span>. This narrative review provides a deep insight into the structure and function of KCCs, NKCCs, and NCC in human physiology and cardiac pathobiology. Also, it provides cell-specific (21 cell types) and region-specific (6 regions) expression of KCC1, KCC2, KCC3, KCC4, NKCC1, NKCC2, and NCC in heart.</span></span></span></p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"125 4","pages":"Article 152045"},"PeriodicalIF":2.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta histochemica","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S006512812300051X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular diseases, the leading life-threatening conditions, involve cardiac arrhythmia, coronary artery disease, myocardial infarction, heart failure, cardiomyopathy, and heart valve disease that are associated with the altered functioning of cation-chloride cotransporters. The decreased number of cation-chloride cotransporters leads to reduced reactivity to adrenergic stimulation. The KCC family is crucial for numerous physiological processes including cell proliferation and invasion, regulation of membrane trafficking, maintaining ionic and osmotic homeostasis, erythrocyte swelling, dendritic spine formation, maturation of postsynaptic GABAergic inhibition, and inhibitory/excitatory signaling in neural tracts. KCC2 maintains intracellular chlorine homeostasis and opposes β-adrenergic stimulation-induced Cl- influx to prevent arrhythmogenesis. KCC3-inactivated cardiac tissue shows increased vascular resistance, aortic distensibility, heart size and weight (i.e. hypertrophic cardiomyopathy). Due to KCC4’s high affinity for K+, it plays a vital role in cardiac ischemia with increased extracellular K+. The NKCC and NCC families play a vital role in the regulation of saliva volume, establishing the potassium-rich endolymph in the cochlea, sodium uptake in astrocytes, inhibiting myogenic response in microcirculatory beds, regulation of smooth muscle tone in resistance vessels, and blood pressure. NKCC1 regulates chlorine homeostasis and knocking it out impairs cardiomyocyte depolarization and cardiac contractility as well as impairs depolarization and contractility of vascular smooth muscle rings in the aorta. The activation of NCC in vascular cells promotes the formation of the abdominal aortic aneurysm. This narrative review provides a deep insight into the structure and function of KCCs, NKCCs, and NCC in human physiology and cardiac pathobiology. Also, it provides cell-specific (21 cell types) and region-specific (6 regions) expression of KCC1, KCC2, KCC3, KCC4, NKCC1, NKCC2, and NCC in heart.
期刊介绍:
Acta histochemica, a journal of structural biochemistry of cells and tissues, publishes original research articles, short communications, reviews, letters to the editor, meeting reports and abstracts of meetings. The aim of the journal is to provide a forum for the cytochemical and histochemical research community in the life sciences, including cell biology, biotechnology, neurobiology, immunobiology, pathology, pharmacology, botany, zoology and environmental and toxicological research. The journal focuses on new developments in cytochemistry and histochemistry and their applications. Manuscripts reporting on studies of living cells and tissues are particularly welcome. Understanding the complexity of cells and tissues, i.e. their biocomplexity and biodiversity, is a major goal of the journal and reports on this topic are especially encouraged. Original research articles, short communications and reviews that report on new developments in cytochemistry and histochemistry are welcomed, especially when molecular biology is combined with the use of advanced microscopical techniques including image analysis and cytometry. Letters to the editor should comment or interpret previously published articles in the journal to trigger scientific discussions. Meeting reports are considered to be very important publications in the journal because they are excellent opportunities to present state-of-the-art overviews of fields in research where the developments are fast and hard to follow. Authors of meeting reports should consult the editors before writing a report. The editorial policy of the editors and the editorial board is rapid publication. Once a manuscript is received by one of the editors, an editorial decision about acceptance, revision or rejection will be taken within a month. It is the aim of the publishers to have a manuscript published within three months after the manuscript has been accepted