{"title":"In Amphioxus Embryos, Some Neural Tube Cells Resemble Differentiating Coronet Cells of Fishes and Tunicates.","authors":"Nicholas D Holland, Jennifer H Mansfield","doi":"10.1086/724581","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractFor neurula embryos of amphioxus (chordate subphylum Cephalochordata), the anterior region of the neural tube was studied with transmission electron microscopy. This survey demonstrated previously unreported cells, each characterized by a cilium bearing on its shaft a protruding lateral bubble packed with vesicles. Such cilia resemble those known from immature coronet cells in other chordates-namely, fishes in the Vertebrata and ascidians and appendicularians in the Tunicata. This wide occurrence of coronet-like cells raises questions about their possible homologies within the phylum Chordata. When considered at the level of the whole cell, such homology is not well supported. For example, the fish cells are generally thought to be glia, while the tunicate cells are considered to be neurons; moreover, cytoplasmic smooth endoplasmic reticulum, which is predominant in the former, is undetectable in the latter. In contrast, a more convincing case for homology can be made by limiting comparisons to the cell apices with their modified cilia. In addition to the fine-structural similarities between fishes and tunicates already mentioned, nonvisual opsins have been found associated with the vesicles in the modified cilia of both groups. Such opsins are thought to link photoreception to endocrine output controlling behavior. Further work would be needed to test the idea that the amphioxus diencephalic cells with lateral bubble cilia might similarly be opsin rich and could provide insights into the evolutionary history of the coronet cells within the phylum Chordata.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"244 1","pages":"1-8"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/724581","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractFor neurula embryos of amphioxus (chordate subphylum Cephalochordata), the anterior region of the neural tube was studied with transmission electron microscopy. This survey demonstrated previously unreported cells, each characterized by a cilium bearing on its shaft a protruding lateral bubble packed with vesicles. Such cilia resemble those known from immature coronet cells in other chordates-namely, fishes in the Vertebrata and ascidians and appendicularians in the Tunicata. This wide occurrence of coronet-like cells raises questions about their possible homologies within the phylum Chordata. When considered at the level of the whole cell, such homology is not well supported. For example, the fish cells are generally thought to be glia, while the tunicate cells are considered to be neurons; moreover, cytoplasmic smooth endoplasmic reticulum, which is predominant in the former, is undetectable in the latter. In contrast, a more convincing case for homology can be made by limiting comparisons to the cell apices with their modified cilia. In addition to the fine-structural similarities between fishes and tunicates already mentioned, nonvisual opsins have been found associated with the vesicles in the modified cilia of both groups. Such opsins are thought to link photoreception to endocrine output controlling behavior. Further work would be needed to test the idea that the amphioxus diencephalic cells with lateral bubble cilia might similarly be opsin rich and could provide insights into the evolutionary history of the coronet cells within the phylum Chordata.
期刊介绍:
The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.