{"title":"Fundamental Niche Narrows through Larval Stages of a Filter-Feeding Marine Invertebrate.","authors":"Emily L Richardson, Dustin J Marshall","doi":"10.1086/725151","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractOntogenetic niche theory predicts that resource use should change across complex life histories. To date, studies of ontogenetic shifts in food niches have mainly focused on a few systems (<i>e.g.</i>, fish), with less attention on organisms with filter-feeding larval stages (<i>e.g.</i>, marine invertebrates). Recent studies suggest that filter-feeding organisms can select specific particles, but our understanding of whether niche theory applies to this group is limited. We characterized the fundamental niche (<i>i.e.</i>, feeding proficiency) by examining how niche breadth changes across the larval stages of the filter-feeding marine polychaete <i>Galeolaria caespitosa</i>. Using a no-choice experimental design, we measured feeding rates of trochophore, intermediate-stage, and metatrochophore larvae on the prey phytoplankton species <i>Nannochloropsis oculata</i>, <i>Tisochrysis lutea</i>, <i>Dunaliella tertiolecta</i>, and <i>Rhodomonas salina</i>, which vary 10-fold in size, from the smallest to the largest. We formally estimated Levins's niche breadth index to determine the relative proportions of each species in the diet of the three larval stages and also tested how feeding rates vary with algal species and stage. We found that early stages eat all four algal species in roughly equal proportions, but niche breadth narrows during ontogeny, such that metatrochophores are feeding specialists relative to early stages. We also found that feeding rates differed across phytoplankton species: the medium-sized cells (<i>Tisochrysis</i> and <i>Dunaliella</i>) were eaten most, and the smallest species (<i>Nannochloropsis</i>) was eaten the least. Our results demonstrate that ontogenetic niche theory describes changes in fundamental niche in filter feeders. An important next step is to test whether the realized niche (<i>i.e.</i>, preference) changes during the larval phase as well.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"244 1","pages":"25-34"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/725151","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractOntogenetic niche theory predicts that resource use should change across complex life histories. To date, studies of ontogenetic shifts in food niches have mainly focused on a few systems (e.g., fish), with less attention on organisms with filter-feeding larval stages (e.g., marine invertebrates). Recent studies suggest that filter-feeding organisms can select specific particles, but our understanding of whether niche theory applies to this group is limited. We characterized the fundamental niche (i.e., feeding proficiency) by examining how niche breadth changes across the larval stages of the filter-feeding marine polychaete Galeolaria caespitosa. Using a no-choice experimental design, we measured feeding rates of trochophore, intermediate-stage, and metatrochophore larvae on the prey phytoplankton species Nannochloropsis oculata, Tisochrysis lutea, Dunaliella tertiolecta, and Rhodomonas salina, which vary 10-fold in size, from the smallest to the largest. We formally estimated Levins's niche breadth index to determine the relative proportions of each species in the diet of the three larval stages and also tested how feeding rates vary with algal species and stage. We found that early stages eat all four algal species in roughly equal proportions, but niche breadth narrows during ontogeny, such that metatrochophores are feeding specialists relative to early stages. We also found that feeding rates differed across phytoplankton species: the medium-sized cells (Tisochrysis and Dunaliella) were eaten most, and the smallest species (Nannochloropsis) was eaten the least. Our results demonstrate that ontogenetic niche theory describes changes in fundamental niche in filter feeders. An important next step is to test whether the realized niche (i.e., preference) changes during the larval phase as well.
期刊介绍:
The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.