Matroid psi classes.

IF 1.2 2区 数学 Q1 MATHEMATICS
Selecta Mathematica-New Series Pub Date : 2022-01-01 Epub Date: 2022-04-01 DOI:10.1007/s00029-022-00771-5
Jeshu Dastidar, Dustin Ross
{"title":"Matroid psi classes.","authors":"Jeshu Dastidar,&nbsp;Dustin Ross","doi":"10.1007/s00029-022-00771-5","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by the intersection theory of moduli spaces of curves, we introduce psi classes in matroid Chow rings and prove a number of properties that naturally generalize properties of psi classes in Chow rings of Losev-Manin spaces. We use these properties of matroid psi classes to give new proofs of (1) a Chow-theoretic interpretation for the coefficients of the reduced characteristic polynomials of matroids, (2) explicit formulas for the volume polynomials of matroids, and (3) Poincaré duality for matroid Chow rings.</p>","PeriodicalId":49551,"journal":{"name":"Selecta Mathematica-New Series","volume":"28 3","pages":"55"},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973712/pdf/","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica-New Series","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00029-022-00771-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

Motivated by the intersection theory of moduli spaces of curves, we introduce psi classes in matroid Chow rings and prove a number of properties that naturally generalize properties of psi classes in Chow rings of Losev-Manin spaces. We use these properties of matroid psi classes to give new proofs of (1) a Chow-theoretic interpretation for the coefficients of the reduced characteristic polynomials of matroids, (2) explicit formulas for the volume polynomials of matroids, and (3) Poincaré duality for matroid Chow rings.

Abstract Image

Abstract Image

Matroid psi等级。
受曲线模空间交理论的启发,我们在拟阵Chow环中引入了psi类,并证明了一些性质,这些性质自然地推广了Losev-Manin空间Chow环的psi类的性质。我们利用拟阵psi类的这些性质,给出了(1)拟阵的约化特征多项式系数的Chow理论解释,(2)拟阵体积多项式的显式公式,以及(3)拟阵Chow环的Poincaré对偶的新证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
68
审稿时长
>12 weeks
期刊介绍: Selecta Mathematica, New Series is a peer-reviewed journal addressed to a wide mathematical audience. It accepts well-written high quality papers in all areas of pure mathematics, and selected areas of applied mathematics. The journal especially encourages submission of papers which have the potential of opening new perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信