Variance Measures for Symmetric Positive (Semi-) Definite Tensors in Two Dimensions.

Magnus Herberthson, Evren Özarslan, Carl-Fredrik Westin
{"title":"Variance Measures for Symmetric Positive (Semi-) Definite Tensors in Two Dimensions.","authors":"Magnus Herberthson,&nbsp;Evren Özarslan,&nbsp;Carl-Fredrik Westin","doi":"10.1007/978-3-030-56215-1_1","DOIUrl":null,"url":null,"abstract":"<p><p>Calculating the variance of a family of tensors, each represented by a symmetric positive semi-definite second order tensor/matrix, involves the formation of a fourth order tensor <i>R</i><sub><i>abcd</i></sub>. To form this tensor, the tensor product of each second order tensor with itself is formed, and these products are then summed, giving the tensor <i>R</i><sub><i>abcd</i></sub> the same symmetry properties as the elasticity tensor in continuum mechanics. This tensor has been studied with respect to many properties: representations, invariants, decomposition, the equivalence problem et cetera. In this paper we focus on the two-dimensional case where we give a set of invariants which ensures equivalence of two such fourth order tensors <i>R</i><sub><i>abcd</i></sub> and <math><mrow><msub><mover><mi>R</mi><mo>~</mo></mover><mrow><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi></mrow></msub></mrow></math>. In terms of components, such an equivalence means that components <i>R</i><sub><i>ijkl</i></sub> of the first tensor will transform into the components <math><mrow><msub><mover><mi>R</mi><mo>~</mo></mover><mrow><mi>i</mi><mi>j</mi><mi>k</mi><mi>l</mi></mrow></msub></mrow></math> of the second tensor for some change of the coordinate system.</p>","PeriodicalId":74126,"journal":{"name":"Mathematics and visualization","volume":"2021 ","pages":"3-22"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-56215-1_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Calculating the variance of a family of tensors, each represented by a symmetric positive semi-definite second order tensor/matrix, involves the formation of a fourth order tensor Rabcd. To form this tensor, the tensor product of each second order tensor with itself is formed, and these products are then summed, giving the tensor Rabcd the same symmetry properties as the elasticity tensor in continuum mechanics. This tensor has been studied with respect to many properties: representations, invariants, decomposition, the equivalence problem et cetera. In this paper we focus on the two-dimensional case where we give a set of invariants which ensures equivalence of two such fourth order tensors Rabcd and R~abcd. In terms of components, such an equivalence means that components Rijkl of the first tensor will transform into the components R~ijkl of the second tensor for some change of the coordinate system.

Abstract Image

Abstract Image

二维对称正(半)定张量的方差测度。
计算一组张量的方差,每个张量由对称的正半定二阶张量/矩阵表示,涉及到四阶张量Rabcd的形成。为了形成这个张量,形成了每个二阶张量与自身的张量积,然后将这些积求和,使张量Rabcd具有与连续介质力学中的弹性张量相同的对称性。这个张量已经被研究了很多性质:表示,不变量,分解,等价问题等等。在二维情况下,我们给出了一组保证这两个四阶张量Rabcd和R~abcd等价的不变量。在分量方面,这样的等价意味着第一个张量的分量Rijkl会随着坐标系的变化而变换为第二个张量的分量R~ijkl。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信