How to develop, test, and extend multinomial processing tree models: A tutorial.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Oliver Schmidt, Edgar Erdfelder, Daniel W Heck
{"title":"How to develop, test, and extend multinomial processing tree models: A tutorial.","authors":"Oliver Schmidt,&nbsp;Edgar Erdfelder,&nbsp;Daniel W Heck","doi":"10.1037/met0000561","DOIUrl":null,"url":null,"abstract":"<p><p>Many psychological theories assume that observable responses are determined by multiple latent processes. Multinomial processing tree (MPT) models are a class of cognitive models for discrete responses that allow researchers to disentangle and measure such processes. Before applying MPT models to specific psychological theories, it is necessary to tailor a model to specific experimental designs. In this tutorial, we explain how to develop, fit, and test MPT models using the classical pair-clustering model as a running example. The first part covers the required data structures, model equations, identifiability, model validation, maximum-likelihood estimation, hypothesis tests, and power analyses using the software multiTree. The second part introduces hierarchical MPT modeling which allows researchers to account for individual differences and to estimate the correlations of latent processes among each other and with additional covariates using the TreeBUGS package in R. All examples including data and annotated analysis scripts are provided at the Open Science Framework (https://osf.io/24pbm/). (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000561","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Many psychological theories assume that observable responses are determined by multiple latent processes. Multinomial processing tree (MPT) models are a class of cognitive models for discrete responses that allow researchers to disentangle and measure such processes. Before applying MPT models to specific psychological theories, it is necessary to tailor a model to specific experimental designs. In this tutorial, we explain how to develop, fit, and test MPT models using the classical pair-clustering model as a running example. The first part covers the required data structures, model equations, identifiability, model validation, maximum-likelihood estimation, hypothesis tests, and power analyses using the software multiTree. The second part introduces hierarchical MPT modeling which allows researchers to account for individual differences and to estimate the correlations of latent processes among each other and with additional covariates using the TreeBUGS package in R. All examples including data and annotated analysis scripts are provided at the Open Science Framework (https://osf.io/24pbm/). (PsycInfo Database Record (c) 2023 APA, all rights reserved).

如何开发、测试和扩展多项处理树模型:教程。
许多心理学理论认为,可观察到的反应是由多个潜在过程决定的。多项处理树(MPT)模型是一类离散响应的认知模型,允许研究人员解开和测量这些过程。在将MPT模型应用于具体的心理学理论之前,有必要根据具体的实验设计来定制模型。在本教程中,我们将使用经典的配对聚类模型作为运行示例,解释如何开发、拟合和测试MPT模型。第一部分涵盖了所需的数据结构、模型方程、可识别性、模型验证、最大似然估计、假设检验和使用软件multiTree的功率分析。第二部分介绍了分层MPT建模,它允许研究人员使用r中的TreeBUGS包来解释个体差异,并估计潜在过程之间以及与其他协变量之间的相关性。所有示例包括数据和注释分析脚本都在开放科学框架(https://osf.io/24pbm/)上提供。(PsycInfo数据库记录(c) 2023 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信