Lentiviral Micro-dystrophin Gene Treatment into Late-stage mdx Mice for Duchenne Muscular Dystrophy Disease.

IF 3.8 4区 医学 Q2 GENETICS & HEREDITY
Selen Abanuz Eren, Cihan Tastan, Kevser Buse Karadeniz, Raife Dilek Turan, Didem Cakirsoy, Derya Dilek Kancagi, Sevdican Ustun Yilmaz, Mustafa Oztatlici, Hulya Oztatlici, Samed Ozer, Gamze Tumentemur, Ahmet Tarık Baykal, Ercument Ovali
{"title":"Lentiviral Micro-dystrophin Gene Treatment into Late-stage mdx Mice for Duchenne Muscular Dystrophy Disease.","authors":"Selen Abanuz Eren,&nbsp;Cihan Tastan,&nbsp;Kevser Buse Karadeniz,&nbsp;Raife Dilek Turan,&nbsp;Didem Cakirsoy,&nbsp;Derya Dilek Kancagi,&nbsp;Sevdican Ustun Yilmaz,&nbsp;Mustafa Oztatlici,&nbsp;Hulya Oztatlici,&nbsp;Samed Ozer,&nbsp;Gamze Tumentemur,&nbsp;Ahmet Tarık Baykal,&nbsp;Ercument Ovali","doi":"10.2174/1566523223666230407091317","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Duchenne Muscular Dystrophy (DMD) results in a deficiency of dystrophin expression in patient muscle fibers, leading to progressive muscle degeneration. Treatment of DMD has undertaken current transformation with the advancement of novel gene therapy and molecular biology techniques, which are secure, well-tolerated, and effective therapeutic approaches.</p><p><strong>Introduction: </strong>DMD gene therapies have mainly focused on young DMD patients as in vivo animal model trials have been performed in 0-1-month DMD mice. However, it has not yet been answered how micro-dystrophin encoding lentiviral treatment affects Dystrophin expression and DMD symptoms in 10-month mdx mice.</p><p><strong>Methods: </strong>We planned to integrate the micro-Dystrophin gene sequence into the muscle cells by viral transfer, using micro-Dystrophin-encoding lentivirus to reduce the dystrophic pathology in late-stage dmd mice. The histopathological and physiological-functional regeneration activities of the lentiviralmicro- Dystrophin gene therapy methods were compared, along with changes in temporal Dystrophin expression and their functionality, toxicity, and gene expression level.</p><p><strong>Results: </strong>Here, we showed that the micro-dystrophin transgene transfers intramuscularly and intraperitoneally in late-stage dmd-mdx-4cv mice restored dystrophin expression in the skeletal and cardiac muscle (<i>p</i> <0.001). Furthermore, motor performance analysis, including hanging and tracking tests, improved statistically significantly after the treatment (<i>p</i> <0.05).</p><p><strong>Conclusion: </strong>Consequently, this study suggests that patients in the late stages of muscular dystrophy can benefit from lentiviral micro-dystrophin gene therapies to present an improvement in dystrophic muscle pathology.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":"23 4","pages":"304-315"},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1566523223666230407091317","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1

Abstract

Aim: Duchenne Muscular Dystrophy (DMD) results in a deficiency of dystrophin expression in patient muscle fibers, leading to progressive muscle degeneration. Treatment of DMD has undertaken current transformation with the advancement of novel gene therapy and molecular biology techniques, which are secure, well-tolerated, and effective therapeutic approaches.

Introduction: DMD gene therapies have mainly focused on young DMD patients as in vivo animal model trials have been performed in 0-1-month DMD mice. However, it has not yet been answered how micro-dystrophin encoding lentiviral treatment affects Dystrophin expression and DMD symptoms in 10-month mdx mice.

Methods: We planned to integrate the micro-Dystrophin gene sequence into the muscle cells by viral transfer, using micro-Dystrophin-encoding lentivirus to reduce the dystrophic pathology in late-stage dmd mice. The histopathological and physiological-functional regeneration activities of the lentiviralmicro- Dystrophin gene therapy methods were compared, along with changes in temporal Dystrophin expression and their functionality, toxicity, and gene expression level.

Results: Here, we showed that the micro-dystrophin transgene transfers intramuscularly and intraperitoneally in late-stage dmd-mdx-4cv mice restored dystrophin expression in the skeletal and cardiac muscle (p <0.001). Furthermore, motor performance analysis, including hanging and tracking tests, improved statistically significantly after the treatment (p <0.05).

Conclusion: Consequently, this study suggests that patients in the late stages of muscular dystrophy can benefit from lentiviral micro-dystrophin gene therapies to present an improvement in dystrophic muscle pathology.

慢病毒微营养不良蛋白基因治疗晚期mdx小鼠杜氏肌营养不良症。
目的:杜氏肌营养不良症(DMD)导致患者肌纤维中肌营养不良蛋白表达不足,导致进行性肌肉变性。随着新的基因治疗和分子生物学技术的进步,DMD的治疗已经发生了当前的转变,这些技术是安全、耐受性良好、有效的治疗方法。简介:DMD基因治疗主要集中在年轻DMD患者身上,在0-1月龄DMD小鼠中进行了体内动物模型试验。然而,在10个月大的mdx小鼠中,微肌营养不良蛋白编码慢病毒治疗是如何影响肌营养不良蛋白表达和DMD症状的,目前还没有答案。方法:我们计划通过病毒转移将微肌营养不良蛋白基因序列整合到肌细胞中,使用编码微肌营养不良蛋白的慢病毒来减少晚期dmd小鼠的营养不良病理。比较慢病毒微肌营养不良蛋白基因治疗方法的组织病理学和生理功能再生活性,以及时间肌营养不良蛋白表达的变化及其功能、毒性和基因表达水平。结果:本研究表明,在dmd-mdx-4cv晚期小鼠中,微肌营养不良蛋白转基因肌内和腹腔内转移恢复了骨骼肌和心肌中肌营养不良蛋白的表达(p p)。结论:因此,本研究表明,肌营养不良晚期患者可以受益于慢病毒微肌营养不良蛋白基因治疗,改善肌营养不良病理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current gene therapy
Current gene therapy 医学-遗传学
CiteScore
6.70
自引率
2.80%
发文量
46
期刊介绍: Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases. Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信