AB-Amy: machine learning aided amyloidogenic risk prediction of therapeutic antibody light chains.

Q2 Medicine
Yuwei Zhou, Ziru Huang, Yushu Gou, Siqi Liu, Wei Yang, Hongyu Zhang, Anthony Mackitz Dzisoo, Jian Huang
{"title":"AB-Amy: machine learning aided amyloidogenic risk prediction of therapeutic antibody light chains.","authors":"Yuwei Zhou,&nbsp;Ziru Huang,&nbsp;Yushu Gou,&nbsp;Siqi Liu,&nbsp;Wei Yang,&nbsp;Hongyu Zhang,&nbsp;Anthony Mackitz Dzisoo,&nbsp;Jian Huang","doi":"10.1093/abt/tbad007","DOIUrl":null,"url":null,"abstract":"<p><p>Over 120 FDA-approved antibody-based therapeutics are used to treat a variety of diseases.However, many candidates could fail because of unfavorable physicochemical properties. Light-chain amyloidosis is one form of aggregation that can lead to severe safety risks in clinical development. Therefore, screening candidates with a less amyloidosis risk at the early stage can not only save the time and cost of antibody development but also improve the safety of antibody drugs. In this study, based on the dipeptide composition of 742 amyloidogenic and 712 non-amyloidogenic antibody light chains, a support vector machine-based model, AB-Amy, was trained to predict the light-chain amyloidogenic risk. The AUC of AB-Amy reaches 0.9651. The excellent performance of AB-Amy indicates that it can be a useful tool for the <i>in silico</i> evaluation of the light-chain amyloidogenic risk to ensure the safety of antibody therapeutics under clinical development. A web server is freely available at http://i.uestc.edu.cn/AB-Amy/.</p>","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/07/8d/tbad007.PMC10365155.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibody Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/abt/tbad007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Over 120 FDA-approved antibody-based therapeutics are used to treat a variety of diseases.However, many candidates could fail because of unfavorable physicochemical properties. Light-chain amyloidosis is one form of aggregation that can lead to severe safety risks in clinical development. Therefore, screening candidates with a less amyloidosis risk at the early stage can not only save the time and cost of antibody development but also improve the safety of antibody drugs. In this study, based on the dipeptide composition of 742 amyloidogenic and 712 non-amyloidogenic antibody light chains, a support vector machine-based model, AB-Amy, was trained to predict the light-chain amyloidogenic risk. The AUC of AB-Amy reaches 0.9651. The excellent performance of AB-Amy indicates that it can be a useful tool for the in silico evaluation of the light-chain amyloidogenic risk to ensure the safety of antibody therapeutics under clinical development. A web server is freely available at http://i.uestc.edu.cn/AB-Amy/.

Abstract Image

Abstract Image

Abstract Image

AB-Amy:机器学习辅助治疗性抗体轻链淀粉样变性风险预测。
超过120种fda批准的基于抗体的治疗方法用于治疗各种疾病。然而,由于不利的物理化学性质,许多候选材料可能会失败。轻链淀粉样变性是一种聚集形式,可在临床开发中导致严重的安全风险。因此,在早期筛选淀粉样变风险较小的候选药物,不仅可以节省抗体开发的时间和成本,还可以提高抗体药物的安全性。本研究基于742个淀粉样蛋白抗体轻链和712个非淀粉样蛋白抗体轻链的二肽组成,训练基于支持向量机的AB-Amy模型来预测轻链淀粉样蛋白风险。AB-Amy的AUC达到0.9651。AB-Amy的优异表现表明,它可以作为一种有用的工具,用于轻链淀粉样变性风险的计算机评估,以确保临床开发中抗体治疗药物的安全性。在http://i.uestc.edu.cn/AB-Amy/上可以免费获得web服务器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Antibody Therapeutics
Antibody Therapeutics Medicine-Immunology and Allergy
CiteScore
8.70
自引率
0.00%
发文量
30
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信