Some properties of branching processes with random control functions and affected by viral infectivity in random environments.

IF 2.3 Q1 MATHEMATICS
Min Ren, Guanghui Zhang
{"title":"Some properties of branching processes with random control functions and affected by viral infectivity in random environments.","authors":"Min Ren,&nbsp;Guanghui Zhang","doi":"10.1186/s13662-023-03775-3","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a model of branching processes with random control functions and affected by viral infectivity in independent and identically distributed random environments is established, and the Markov property of the model and a sufficient condition for the model to be certainly extinct under some conditions are discussed. Then, the limit properties of the model are studied. Under the normalization factor <math><mo>{</mo><msub><mi>S</mi><mi>n</mi></msub><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo></math>, the normalization processes <math><mo>{</mo><msub><mover><mi>W</mi><mo>ˆ</mo></mover><mi>n</mi></msub><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo></math> are studied, and the sufficient conditions of <math><mo>{</mo><msub><mover><mi>W</mi><mo>ˆ</mo></mover><mi>n</mi></msub><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo></math> a.s., <math><msup><mi>L</mi><mn>1</mn></msup></math> and <math><msup><mi>L</mi><mn>2</mn></msup></math> convergence are given; A sufficient condition and a necessary condition for convergence to a nondegenerate at zero random variable are obtained. Under the normalization factor <math><mo>{</mo><msub><mi>I</mi><mi>n</mi></msub><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo></math>, the normalization processes <math><mo>{</mo><msub><mover><mi>W</mi><mo>¯</mo></mover><mi>n</mi></msub><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo></math> are studied, and the sufficient conditions of <math><mo>{</mo><msub><mover><mi>W</mi><mo>¯</mo></mover><mi>n</mi></msub><mo>:</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>}</mo></math> a.s., and <math><msup><mi>L</mi><mn>1</mn></msup></math> convergence are obtained.</p>","PeriodicalId":72091,"journal":{"name":"Advances in continuous and discrete models","volume":"2023 1","pages":"26"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184110/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in continuous and discrete models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13662-023-03775-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a model of branching processes with random control functions and affected by viral infectivity in independent and identically distributed random environments is established, and the Markov property of the model and a sufficient condition for the model to be certainly extinct under some conditions are discussed. Then, the limit properties of the model are studied. Under the normalization factor {Sn:nN}, the normalization processes {Wˆn:nN} are studied, and the sufficient conditions of {Wˆn:nN} a.s., L1 and L2 convergence are given; A sufficient condition and a necessary condition for convergence to a nondegenerate at zero random variable are obtained. Under the normalization factor {In:nN}, the normalization processes {W¯n:nN} are studied, and the sufficient conditions of {W¯n:nN} a.s., and L1 convergence are obtained.

随机环境中受病毒感染性影响的具有随机控制函数的分支过程的一些性质。
本文建立了独立同分布随机环境中受病毒感染的具有随机控制函数的分支过程模型,讨论了该模型的马尔可夫性质和在某些条件下该模型肯定绝灭的充分条件。然后,研究了模型的极限性质。在归一化因子{Sn:n∈n}下,研究了归一化过程{W′n:n∈n},并给出了{W′n:n∈n} as、L1、L2收敛的充分条件;得到了在零随机变量处收敛到非退化的充分条件和必要条件。在归一化因子{In:n∈n}下,研究了归一化过程{W¯n:n∈n},得到了{W¯n:n∈n} a.s.和L1收敛的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信