{"title":"Globally Adaptive Longitudinal Quantile Regression with High Dimensional Compositional Covariates.","authors":"Huijuan Ma, Qi Zheng, Zhumin Zhang, Huichuan Lai, Limin Peng","doi":"10.5705/ss.202021.0006","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we propose a longitudinal quantile regression framework that enables a robust characterization of heterogeneous covariate-response associations in the presence of high-dimensional compositional covariates and repeated measurements of both response and covariates. We develop a globally adaptive penalization procedure, which can consistently identify covariate sparsity patterns across a continuum set of quantile levels. The proposed estimation procedure properly aggregates longitudinal observations over time, and ensures the satisfaction of the sum-zero coefficient constraint that is needed for proper interpretation of the effects of compositional covariates. We establish the oracle rate of uniform convergence and weak convergence of the resulting estimators, and further justify the proposed uniform selector of the tuning parameter in terms of achieving global model selection consistency. We derive an efficient algorithm by incorporating existing R packages to facilitate stable and fast computation. Our extensive simulation studies confirm the theoretical findings. We apply the proposed method to a longitudinal study of cystic fibrosis children where the association between gut microbiome and other diet-related biomarkers is of interest.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361693/pdf/nihms-1757788.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202021.0006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we propose a longitudinal quantile regression framework that enables a robust characterization of heterogeneous covariate-response associations in the presence of high-dimensional compositional covariates and repeated measurements of both response and covariates. We develop a globally adaptive penalization procedure, which can consistently identify covariate sparsity patterns across a continuum set of quantile levels. The proposed estimation procedure properly aggregates longitudinal observations over time, and ensures the satisfaction of the sum-zero coefficient constraint that is needed for proper interpretation of the effects of compositional covariates. We establish the oracle rate of uniform convergence and weak convergence of the resulting estimators, and further justify the proposed uniform selector of the tuning parameter in terms of achieving global model selection consistency. We derive an efficient algorithm by incorporating existing R packages to facilitate stable and fast computation. Our extensive simulation studies confirm the theoretical findings. We apply the proposed method to a longitudinal study of cystic fibrosis children where the association between gut microbiome and other diet-related biomarkers is of interest.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.