Globally Adaptive Longitudinal Quantile Regression with High Dimensional Compositional Covariates.

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY
Huijuan Ma, Qi Zheng, Zhumin Zhang, Huichuan Lai, Limin Peng
{"title":"Globally Adaptive Longitudinal Quantile Regression with High Dimensional Compositional Covariates.","authors":"Huijuan Ma,&nbsp;Qi Zheng,&nbsp;Zhumin Zhang,&nbsp;Huichuan Lai,&nbsp;Limin Peng","doi":"10.5705/ss.202021.0006","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we propose a longitudinal quantile regression framework that enables a robust characterization of heterogeneous covariate-response associations in the presence of high-dimensional compositional covariates and repeated measurements of both response and covariates. We develop a globally adaptive penalization procedure, which can consistently identify covariate sparsity patterns across a continuum set of quantile levels. The proposed estimation procedure properly aggregates longitudinal observations over time, and ensures the satisfaction of the sum-zero coefficient constraint that is needed for proper interpretation of the effects of compositional covariates. We establish the oracle rate of uniform convergence and weak convergence of the resulting estimators, and further justify the proposed uniform selector of the tuning parameter in terms of achieving global model selection consistency. We derive an efficient algorithm by incorporating existing R packages to facilitate stable and fast computation. Our extensive simulation studies confirm the theoretical findings. We apply the proposed method to a longitudinal study of cystic fibrosis children where the association between gut microbiome and other diet-related biomarkers is of interest.</p>","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"33 Spec","pages":"1295-1318"},"PeriodicalIF":1.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361693/pdf/nihms-1757788.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202021.0006","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a longitudinal quantile regression framework that enables a robust characterization of heterogeneous covariate-response associations in the presence of high-dimensional compositional covariates and repeated measurements of both response and covariates. We develop a globally adaptive penalization procedure, which can consistently identify covariate sparsity patterns across a continuum set of quantile levels. The proposed estimation procedure properly aggregates longitudinal observations over time, and ensures the satisfaction of the sum-zero coefficient constraint that is needed for proper interpretation of the effects of compositional covariates. We establish the oracle rate of uniform convergence and weak convergence of the resulting estimators, and further justify the proposed uniform selector of the tuning parameter in terms of achieving global model selection consistency. We derive an efficient algorithm by incorporating existing R packages to facilitate stable and fast computation. Our extensive simulation studies confirm the theoretical findings. We apply the proposed method to a longitudinal study of cystic fibrosis children where the association between gut microbiome and other diet-related biomarkers is of interest.

高维组成协变量的全局自适应纵向分位数回归。
在这项工作中,我们提出了一个纵向分位数回归框架,该框架能够在高维组成协变量和响应和协变量的重复测量中对异质协变量-响应关联进行稳健表征。我们开发了一个全局自适应的惩罚程序,它可以在连续的分位数水平上一致地识别协变量稀疏性模式。所提出的估计程序适当地汇总了随时间推移的纵向观测,并确保满足零和系数约束,这是正确解释组成协变量影响所需的。我们建立了估计量的一致收敛率和弱收敛率,并进一步从实现全局模型选择一致性的角度证明了所提出的调谐参数的一致选择。我们结合现有的R包推导出一种高效的算法,以促进稳定和快速的计算。我们广泛的模拟研究证实了这些理论发现。我们将提出的方法应用于囊性纤维化儿童的纵向研究,其中肠道微生物组和其他饮食相关生物标志物之间的关联是感兴趣的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信