Modulation of the conformation, fibrillation, and fibril morphologies of human brain α-, β-, and γ-synuclein proteins by the disaccharide chemical chaperone trehalose

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Manish K. Jain , Rajiv Bhat
{"title":"Modulation of the conformation, fibrillation, and fibril morphologies of human brain α-, β-, and γ-synuclein proteins by the disaccharide chemical chaperone trehalose","authors":"Manish K. Jain ,&nbsp;Rajiv Bhat","doi":"10.1016/j.bbapap.2023.140932","DOIUrl":null,"url":null,"abstract":"<div><p><span>Human α-, β-, and γ-synuclein (syn) are natively unfolded proteins present in the brain. Deposition of aggregated α-syn in Lewy bodies is associated with Parkinson's disease (PD) and γ-syn is known to be involved in both neurodegeneration and breast cancer. At physiological pH, while α-syn has the highest propensity for fibrillation followed by γ-syn, β-syn does not form any fibrils. Fibril formation in these proteins could be modulated by protein structure stabilizing </span>osmolytes<span><span> such as trehalose which has an exceptional stabilizing effect for </span>globular proteins<span><span>. We present a comprehensive study of the effect of trehalose on the conformation, aggregation, and fibril morphology of α-, β-, and γ-syn proteins. Rather than stabilizing the intrinsically disordered state of the synucleins, trehalose accelerates the rate of fibril formation by forming aggregation-competent partially folded intermediate structures. Fibril morphologies are also strongly dependent on the concentration of trehalose with ≤ 0.4M favoring the formation of mature fibrils in α-, and γ-syn with no effect on the fibrillation of β-syn. At ≥ 0.8M, trehalose promotes the formation of smaller aggregates that are more cytotoxic. Live </span>cell imaging<span> of preformed aggregates of a labeled A90C α-syn shows their rapid internalization into neural cells which could be useful in reducing the load of aggregated species of α-syn. The findings throw light on the differential effect of trehalose on the conformation and aggregation of disordered synuclein proteins with respect to globular proteins and could help in understanding the effect of osmolytes on intrinsically disordered proteins under cellular stress conditions.</span></span></span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963923000468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Human α-, β-, and γ-synuclein (syn) are natively unfolded proteins present in the brain. Deposition of aggregated α-syn in Lewy bodies is associated with Parkinson's disease (PD) and γ-syn is known to be involved in both neurodegeneration and breast cancer. At physiological pH, while α-syn has the highest propensity for fibrillation followed by γ-syn, β-syn does not form any fibrils. Fibril formation in these proteins could be modulated by protein structure stabilizing osmolytes such as trehalose which has an exceptional stabilizing effect for globular proteins. We present a comprehensive study of the effect of trehalose on the conformation, aggregation, and fibril morphology of α-, β-, and γ-syn proteins. Rather than stabilizing the intrinsically disordered state of the synucleins, trehalose accelerates the rate of fibril formation by forming aggregation-competent partially folded intermediate structures. Fibril morphologies are also strongly dependent on the concentration of trehalose with ≤ 0.4M favoring the formation of mature fibrils in α-, and γ-syn with no effect on the fibrillation of β-syn. At ≥ 0.8M, trehalose promotes the formation of smaller aggregates that are more cytotoxic. Live cell imaging of preformed aggregates of a labeled A90C α-syn shows their rapid internalization into neural cells which could be useful in reducing the load of aggregated species of α-syn. The findings throw light on the differential effect of trehalose on the conformation and aggregation of disordered synuclein proteins with respect to globular proteins and could help in understanding the effect of osmolytes on intrinsically disordered proteins under cellular stress conditions.

Abstract Image

双糖化学伴侣海藻糖对人脑α-、β-和γ-突触核蛋白构象、纤颤和纤丝形态的调节
人α-、β-和γ-突触核蛋白(syn)是存在于大脑中的天然未折叠蛋白。路易小体中聚集的α-syn沉积与帕金森病(PD)有关,γ-syn已知与神经变性和乳腺癌有关。在生理pH下,α-syn的纤颤倾向最高,其次是γ-syn,而β-syn不形成纤颤。这些蛋白质中的纤维形成可以通过蛋白质结构稳定渗透物(如海藻糖)来调节,海藻糖对球状蛋白质具有特殊的稳定作用。我们对海藻糖对α-、β-和γ-syn蛋白的构象、聚集和纤维形态的影响进行了全面的研究。海藻糖并没有稳定突触核蛋白的内在无序状态,而是通过形成具有聚集能力的部分折叠中间结构来加速纤维的形成速度。纤维形态也强烈依赖海藻糖浓度,≤0.4M海藻糖有利于α-成熟纤维的形成,而γ-syn对β-syn的纤颤没有影响。≥0.8M时,海藻糖促进形成更小的聚集体,具有更大的细胞毒性。标记的A90C α-syn预先形成的聚集体的活细胞成像显示它们快速内化到神经细胞中,这可能有助于减少α-syn聚集体的负荷。这些发现揭示了海藻糖对无序突触核蛋白的构象和聚集的不同影响,以及相对于球状蛋白的不同影响,并有助于理解细胞应激条件下渗透酶对内在无序蛋白质的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信