Noise-shaping pulse-density modulation in inhibitory neural networks with subthreshold neuron circuits

Akira Utagawa, Tetsuya Asai, Tetsuya Hirose, Yoshihito Amemiya
{"title":"Noise-shaping pulse-density modulation in inhibitory neural networks with subthreshold neuron circuits","authors":"Akira Utagawa,&nbsp;Tetsuya Asai,&nbsp;Tetsuya Hirose,&nbsp;Yoshihito Amemiya","doi":"10.1016/j.ics.2006.12.041","DOIUrl":null,"url":null,"abstract":"<div><p>We designed subthreshold analog MOS circuits implementing an inhibitory network model that performs noise-shaping pulse-density modulation (PDM) with noisy neural elements. The aim of our research is to develop a possible ultralow-power delta–sigma type one-bit analog-to-digital converter. Through circuit simulations we confirmed that the signal-to-noise ratio (SNR) of the network was improved by 7.9 dB compared with that of the uncoupled network as a result of noise shaping.</p></div>","PeriodicalId":84918,"journal":{"name":"International congress series","volume":"1301 ","pages":"Pages 71-74"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ics.2006.12.041","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International congress series","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0531513106006947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We designed subthreshold analog MOS circuits implementing an inhibitory network model that performs noise-shaping pulse-density modulation (PDM) with noisy neural elements. The aim of our research is to develop a possible ultralow-power delta–sigma type one-bit analog-to-digital converter. Through circuit simulations we confirmed that the signal-to-noise ratio (SNR) of the network was improved by 7.9 dB compared with that of the uncoupled network as a result of noise shaping.

阈下神经元回路抑制神经网络中的噪声整形脉冲密度调制
我们设计了亚阈值模拟MOS电路,实现了一个抑制网络模型,该模型使用带噪声的神经元件执行噪声整形脉冲密度调制(PDM)。我们的研究目的是开发一种可能的超低功耗δ - σ型1位模数转换器。通过电路仿真,我们证实了由于噪声整形,网络的信噪比(SNR)比未耦合网络提高了7.9 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信