Hunyong Cho, Shannon T Holloway, David J Couper, Michael R Kosorok
{"title":"Multi-stage optimal dynamic treatment regimes for survival outcomes with dependent censoring.","authors":"Hunyong Cho, Shannon T Holloway, David J Couper, Michael R Kosorok","doi":"10.1093/biomet/asac047","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a reinforcement learning method for estimating an optimal dynamic treatment regime for survival outcomes with dependent censoring. The estimator allows the failure time to be conditionally independent of censoring and dependent on the treatment decision times, supports a flexible number of treatment arms and treatment stages, and can maximize either the mean survival time or the survival probability at a certain time-point. The estimator is constructed using generalized random survival forests and can have polynomial rates of convergence. Simulations and analysis of the Atherosclerosis Risk in Communities study data suggest that the new estimator brings higher expected outcomes than existing methods in various settings.</p>","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"110 2","pages":"395-410"},"PeriodicalIF":2.4000,"publicationDate":"2022-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10183834/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asac047","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a reinforcement learning method for estimating an optimal dynamic treatment regime for survival outcomes with dependent censoring. The estimator allows the failure time to be conditionally independent of censoring and dependent on the treatment decision times, supports a flexible number of treatment arms and treatment stages, and can maximize either the mean survival time or the survival probability at a certain time-point. The estimator is constructed using generalized random survival forests and can have polynomial rates of convergence. Simulations and analysis of the Atherosclerosis Risk in Communities study data suggest that the new estimator brings higher expected outcomes than existing methods in various settings.
期刊介绍:
Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.