Enhancing predictive power by unamalgamating multi-item scales.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
David Trafimow, Michael R Hyman, Alena Kostyk
{"title":"Enhancing predictive power by unamalgamating multi-item scales.","authors":"David Trafimow,&nbsp;Michael R Hyman,&nbsp;Alena Kostyk","doi":"10.1037/met0000599","DOIUrl":null,"url":null,"abstract":"<p><p>The generally small but touted as \"statistically significant\" correlation coefficients in the social sciences jeopardize theory testing and prediction. To investigate these small coefficients' underlying causes, traditional equations such as Spearman's (1904) classic attenuation formula, Cronbach's (1951) alpha, and Guilford and Fruchter's (1973) equation for the effect of additional items on a scale's predictive power are considered. These equations' implications differ regarding large interitem correlations enhancing or diminishing predictive power. Contrary to conventional practice, such correlations decrease predictive power when treating items as multi-item scale components but can increase predictive power when treating items separately. The implications are wide-ranging. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000599","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The generally small but touted as "statistically significant" correlation coefficients in the social sciences jeopardize theory testing and prediction. To investigate these small coefficients' underlying causes, traditional equations such as Spearman's (1904) classic attenuation formula, Cronbach's (1951) alpha, and Guilford and Fruchter's (1973) equation for the effect of additional items on a scale's predictive power are considered. These equations' implications differ regarding large interitem correlations enhancing or diminishing predictive power. Contrary to conventional practice, such correlations decrease predictive power when treating items as multi-item scale components but can increase predictive power when treating items separately. The implications are wide-ranging. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

通过不合并多项目量表来增强预测能力。
在社会科学中,通常较小但被吹捧为“统计显著”的相关系数危及理论检验和预测。为了研究这些小系数的潜在原因,考虑了传统方程,如Spearman(1904)的经典衰减公式,Cronbach(1951)的alpha,以及Guilford和Fruchter(1973)的附加项对量表预测能力影响的方程。这些方程的含义不同于大的项目间相关性,增强或减弱预测能力。与传统做法相反,当将项目作为多项目量表组件处理时,这种相关性会降低预测能力,但当单独处理项目时,这种相关性会增加预测能力。其影响是广泛的。(PsycInfo数据库记录(c) 2023 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信