TripletGO: Integrating Transcript Expression Profiles with Protein Homology Inferences for Gene Function Prediction

IF 11.5 2区 生物学 Q1 GENETICS & HEREDITY
Yi-Heng Zhu , Chengxin Zhang , Yan Liu , Gilbert S. Omenn , Peter L. Freddolino , Dong-Jun Yu , Yang Zhang
{"title":"TripletGO: Integrating Transcript Expression Profiles with Protein Homology Inferences for Gene Function Prediction","authors":"Yi-Heng Zhu ,&nbsp;Chengxin Zhang ,&nbsp;Yan Liu ,&nbsp;Gilbert S. Omenn ,&nbsp;Peter L. Freddolino ,&nbsp;Dong-Jun Yu ,&nbsp;Yang Zhang","doi":"10.1016/j.gpb.2022.03.001","DOIUrl":null,"url":null,"abstract":"<div><p><strong>Gene Ontology</strong> (GO) has been widely used to annotate functions of genes and gene products. Here, we proposed a new method, TripletGO, to deduce GO terms of protein-coding and non-coding genes, through the integration of four complementary pipelines built on <strong>transcript expression profile</strong>, genetic sequence alignment, protein sequence alignment, and naïve probability. TripletGO was tested on a large set of 5754 genes from 8 species (human, mouse, <em>Arabidopsis</em>, rat, fly, budding yeast, fission yeast, and nematoda) and 2433 proteins with available expression data from the third Critical Assessment of Protein Function Annotation challenge (CAFA3). Experimental results show that TripletGO achieves function annotation accuracy significantly beyond the current state-of-the-art approaches. Detailed analyses show that the major advantage of TripletGO lies in the coupling of a new <strong>triplet network</strong>-based profiling method with the feature space mapping technique, which can accurately recognize function patterns from transcript expression profiles. Meanwhile, the combination of multiple complementary models, especially those from transcript expression and <strong>protein-level alignments</strong>, improves the coverage and accuracy of the final GO annotation results. The standalone package and an online server of TripletGO are freely available at <span>https://zhanggroup.org/TripletGO/</span><svg><path></path></svg>.</p></div>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"20 5","pages":"Pages 1013-1027"},"PeriodicalIF":11.5000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025770/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672022922000419","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 2

Abstract

Gene Ontology (GO) has been widely used to annotate functions of genes and gene products. Here, we proposed a new method, TripletGO, to deduce GO terms of protein-coding and non-coding genes, through the integration of four complementary pipelines built on transcript expression profile, genetic sequence alignment, protein sequence alignment, and naïve probability. TripletGO was tested on a large set of 5754 genes from 8 species (human, mouse, Arabidopsis, rat, fly, budding yeast, fission yeast, and nematoda) and 2433 proteins with available expression data from the third Critical Assessment of Protein Function Annotation challenge (CAFA3). Experimental results show that TripletGO achieves function annotation accuracy significantly beyond the current state-of-the-art approaches. Detailed analyses show that the major advantage of TripletGO lies in the coupling of a new triplet network-based profiling method with the feature space mapping technique, which can accurately recognize function patterns from transcript expression profiles. Meanwhile, the combination of multiple complementary models, especially those from transcript expression and protein-level alignments, improves the coverage and accuracy of the final GO annotation results. The standalone package and an online server of TripletGO are freely available at https://zhanggroup.org/TripletGO/.

Abstract Image

Abstract Image

Abstract Image

TripletGO:整合转录表达谱与蛋白质同源性推断基因功能预测
基因本体(Gene Ontology, GO)被广泛用于基因和基因产物的功能标注。在此,我们提出了一种新的方法TripletGO,通过整合基于转录表达谱、基因序列比对、蛋白质序列比对和naïve概率的四个互补管道来推断蛋白质编码和非编码基因的GO项。TripletGO在8个物种(人类、小鼠、拟南芥、大鼠、苍蝇、出芽酵母、裂变酵母和线虫)的5754个基因和2433个蛋白上进行了测试,这些蛋白的表达数据来自第三次蛋白功能注释关键评估(CAFA3)。实验结果表明,TripletGO的功能标注精度显著高于目前最先进的方法。详细分析表明,TripletGO的主要优势在于将一种新的基于三重网络的分析方法与特征空间映射技术相结合,可以准确地从转录物表达谱中识别功能模式。同时,多种互补模型的结合,特别是来自转录物表达和蛋白水平比对的模型,提高了最终GO注释结果的覆盖率和准确性。TripletGO的独立软件包和在线服务器可在https://zhanggroup.org/TripletGO/免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genomics, Proteomics & Bioinformatics
Genomics, Proteomics & Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
14.30
自引率
4.20%
发文量
844
审稿时长
61 days
期刊介绍: Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信