Alana Schreibman, Sherrie Xie, Rebecca A Hubbard, Blanca E Himes
{"title":"Linking Ambient NO2 Pollution Measures with Electronic Health Record Data to Study Asthma Exacerbations.","authors":"Alana Schreibman, Sherrie Xie, Rebecca A Hubbard, Blanca E Himes","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic health record (EHR)-derived data can be linked to geospatially distributed socioeconomic and environmental factors to conduct large-scale epidemiologic studies. Ambient NO2 is a known environmental risk factor for asthma. However, health exposure studies often rely on data from geographically sparse regulatory monitors that may not reflect true individual exposure. We contrasted use of interpolated NO2 regulatory monitor data with raw satellite measurements and satellite-derived ground estimates, building on previous work which has computed improved exposure estimates from remotely sensed data. Raw satellite and satellite-derived ground measurements captured spatial variation missed by interpolated ground monitor measurements. Multivariable analyses comparing these three NO2 measurement approaches (interpolated monitor, raw satellite, and satellite-derived) revealed a positive relationship between exposure and asthma exacerbations for both satellite measurements. Exposure-outcome relationships using the interpolated monitor NO2 were inconsistent with known relationships to asthma, suggesting that interpolated monitor data might yield misleading results in small region studies.</p>","PeriodicalId":72181,"journal":{"name":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283087/pdf/2145.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Electronic health record (EHR)-derived data can be linked to geospatially distributed socioeconomic and environmental factors to conduct large-scale epidemiologic studies. Ambient NO2 is a known environmental risk factor for asthma. However, health exposure studies often rely on data from geographically sparse regulatory monitors that may not reflect true individual exposure. We contrasted use of interpolated NO2 regulatory monitor data with raw satellite measurements and satellite-derived ground estimates, building on previous work which has computed improved exposure estimates from remotely sensed data. Raw satellite and satellite-derived ground measurements captured spatial variation missed by interpolated ground monitor measurements. Multivariable analyses comparing these three NO2 measurement approaches (interpolated monitor, raw satellite, and satellite-derived) revealed a positive relationship between exposure and asthma exacerbations for both satellite measurements. Exposure-outcome relationships using the interpolated monitor NO2 were inconsistent with known relationships to asthma, suggesting that interpolated monitor data might yield misleading results in small region studies.