Understanding mechanism governing the inflammatory potential of metal oxide nanoparticles using periodic table-based descriptors: a nano-QSAR approach.
{"title":"Understanding mechanism governing the inflammatory potential of metal oxide nanoparticles using periodic table-based descriptors: a nano-QSAR approach.","authors":"J Roy, K Roy","doi":"10.1080/1062936X.2023.2227557","DOIUrl":null,"url":null,"abstract":"<p><p>Metal oxide nanoparticles (MeOxNPs) can be made safer by understanding the interaction between the immune system and nanoparticles. A nano-quantitative structure-activity relationship (nano-QSAR) model can be used to evaluate nanoparticle risk quickly and conveniently. The present work attempts to develop nano-QSAR models to determine the inflammatory potential of MeOxNPs based on the THP-1 cell line. A comprehensive dataset comprising 32 MeOxNPs was used to develop a regression model with fold change (FC) of pro-inflammatory cytokine interleukin (IL)-1beta (IL-1b) release in the THP-1 cell line as the endpoint. Further, the same number of MeOx NPs with varying doses was modelled for the cell viability [-ln(p/(1-p))] endpoint. The results obtained from regression models were statistically significant. The descriptors obtained from the developed predictive models inferred that dose, electronegativity and the presence of metal ions and oxygen can be responsible for IL-1β leakage from the THP-1 cell line. Based on our results, we can conclude that periodic table-based descriptors, incorporated into the QSAR models, are reliable for modelling pro-inflammatory potential. Researchers can use these comprehensive results to design metal oxide nanoparticles with lower toxicity and determine the cause of pro-inflammatory conditions induced by MeOxNPs.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"34 6","pages":"459-474"},"PeriodicalIF":2.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2023.2227557","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal oxide nanoparticles (MeOxNPs) can be made safer by understanding the interaction between the immune system and nanoparticles. A nano-quantitative structure-activity relationship (nano-QSAR) model can be used to evaluate nanoparticle risk quickly and conveniently. The present work attempts to develop nano-QSAR models to determine the inflammatory potential of MeOxNPs based on the THP-1 cell line. A comprehensive dataset comprising 32 MeOxNPs was used to develop a regression model with fold change (FC) of pro-inflammatory cytokine interleukin (IL)-1beta (IL-1b) release in the THP-1 cell line as the endpoint. Further, the same number of MeOx NPs with varying doses was modelled for the cell viability [-ln(p/(1-p))] endpoint. The results obtained from regression models were statistically significant. The descriptors obtained from the developed predictive models inferred that dose, electronegativity and the presence of metal ions and oxygen can be responsible for IL-1β leakage from the THP-1 cell line. Based on our results, we can conclude that periodic table-based descriptors, incorporated into the QSAR models, are reliable for modelling pro-inflammatory potential. Researchers can use these comprehensive results to design metal oxide nanoparticles with lower toxicity and determine the cause of pro-inflammatory conditions induced by MeOxNPs.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.