Bader S Alotaibi, Bilal Ahmad Tantry, Anjum Farhana, Muath A Alammar, Naveed Nazir Shah, Abdul Hafeez Mohammed, Farooq Wani, Altaf Bandy
{"title":"Resistance Pattern in Mostly Gram-negative Bacteria Causing Urinary Tract Infections.","authors":"Bader S Alotaibi, Bilal Ahmad Tantry, Anjum Farhana, Muath A Alammar, Naveed Nazir Shah, Abdul Hafeez Mohammed, Farooq Wani, Altaf Bandy","doi":"10.2174/1871526522666220928115043","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The antimicrobial prescription in urinary tract infections (UTI) is driven by local data on its pathogenic spectrum and the resistance pattern exhibited by the disease-causing pathogens. We aimed to determine the bacteriological diversity of UTI causing pathogens and antimicrobial resistance in mostly gram-negative bacteria.</p><p><strong>Methods: </strong>This retrospective hospital-based cross-sectional study analyzed the culture and sensitivity reports of urine samples from a referral centre in the Aljouf region of Saudi Arabia. All the antibiograms from January 1, 2020, to December 31st 2020, were included. The bacterial identification and antimicrobial testing were carried out by the BD Phoenix system (BD Diagnostics, Sparks, MD, USA). Antimicrobial testing was performed as per the Clinical and Laboratory Standard Institute recommendations. Frequencies of multidrug- and extensive drug resistance were calculated.</p><p><strong>Results: </strong>Of the 1334 non-duplicate urine samples received, 422 (31.6%) bacterial growths were observed. Of these, 383 (90.8%) and 39 (9.2%) were gram-negative and gram-positive bacterial isolations, respectively. E. coli 161 (38.1%), K. pneumoniae 97 (23.0%), and E. faecalis 18 (4.3%) were frequent aetiologies of UTI. 309 (80.7%) of gram-negative bacteria were multidrug-resistant including 88 (23.0%) extensively drug-resistant. Overall, a resistance rate of > 55 % to 1st through 4th generation cephalosporins was observed except for cefoxitin (43.7%). A resistance rate of 37.6% was observed towards carbapenems, with the lowest rate (34.0%) to meropenem.</p><p><strong>Conclusion: </strong>Multi-drug resistant gram-negative bacteria dominate the pathogenic spectrum of UTI in the region. A high resistance rate to cephalosporins and carbapenems exists in gram-negative organisms, causing UTI.</p>","PeriodicalId":13678,"journal":{"name":"Infectious disorders drug targets","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1871526522666220928115043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 3
Abstract
Purpose: The antimicrobial prescription in urinary tract infections (UTI) is driven by local data on its pathogenic spectrum and the resistance pattern exhibited by the disease-causing pathogens. We aimed to determine the bacteriological diversity of UTI causing pathogens and antimicrobial resistance in mostly gram-negative bacteria.
Methods: This retrospective hospital-based cross-sectional study analyzed the culture and sensitivity reports of urine samples from a referral centre in the Aljouf region of Saudi Arabia. All the antibiograms from January 1, 2020, to December 31st 2020, were included. The bacterial identification and antimicrobial testing were carried out by the BD Phoenix system (BD Diagnostics, Sparks, MD, USA). Antimicrobial testing was performed as per the Clinical and Laboratory Standard Institute recommendations. Frequencies of multidrug- and extensive drug resistance were calculated.
Results: Of the 1334 non-duplicate urine samples received, 422 (31.6%) bacterial growths were observed. Of these, 383 (90.8%) and 39 (9.2%) were gram-negative and gram-positive bacterial isolations, respectively. E. coli 161 (38.1%), K. pneumoniae 97 (23.0%), and E. faecalis 18 (4.3%) were frequent aetiologies of UTI. 309 (80.7%) of gram-negative bacteria were multidrug-resistant including 88 (23.0%) extensively drug-resistant. Overall, a resistance rate of > 55 % to 1st through 4th generation cephalosporins was observed except for cefoxitin (43.7%). A resistance rate of 37.6% was observed towards carbapenems, with the lowest rate (34.0%) to meropenem.
Conclusion: Multi-drug resistant gram-negative bacteria dominate the pathogenic spectrum of UTI in the region. A high resistance rate to cephalosporins and carbapenems exists in gram-negative organisms, causing UTI.
期刊介绍:
Infectious Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in infectious disorders e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal contains a series of timely in-depth reviews written by leaders in the field covering a range of current topics on drug targets involved in infectious disorders. As the discovery, identification, characterization and validation of novel human drug targets for anti-infective drug discovery continues to grow, this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.