Three-dimensional human germinal centers of different sizes in patients diagnosed with lymphadenitis show comparative constant relative volumes of B cells, T cells, follicular dendritic cells, and macrophages
Constantin Maximilian Schemel , Patrick Wurzel , Sonja Scharf , Hendrik Schäfer , Sylvia Hartmann , Ina Koch , Martin-Leo Hansmann
{"title":"Three-dimensional human germinal centers of different sizes in patients diagnosed with lymphadenitis show comparative constant relative volumes of B cells, T cells, follicular dendritic cells, and macrophages","authors":"Constantin Maximilian Schemel , Patrick Wurzel , Sonja Scharf , Hendrik Schäfer , Sylvia Hartmann , Ina Koch , Martin-Leo Hansmann","doi":"10.1016/j.acthis.2023.152075","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Germinal centers (GCs) are some of the most important structures in the human immune system. As such, their cell types and functions have been thoroughly investigated. B cells, </span>T cells<span>, follicular dendritic cells (FDCs), and macrophages have widely been found to typically be aggregated in GCs. However, the amount of space occupied by each of these cell types has yet to be investigated. In this study, we conducted confocal laser-based 3D cell-volume quantification of typical GC cells under reactive conditions in </span></span>lymphadenitis<span><span> and investigated how volume proportions change during GC development. For this investigation, we used anti-CD3 (T cells), anti-CD20 and anti-Pax5 (B cells), anti-CD23 (FDCs), anti-CD68 (macrophages), and DAPI<span> (nuclear staining). We detected average proportions of about 11% CD3, 9% CD20, 6% </span></span>CD23<span>, and 2% CD68 in the largest possible regions of interest within GCs. Interestingly, these values remained steady relatively independent of GC size. The remarkably low B cell proportion can be attributed to technical constraints given the use of the CD20 antibody in 3D. Applying the B cell marker Pax5, we found that about 44% of the volume was occupied by B cells after extrapolating the volume of B </span></span></span>cell nuclei to that of whole B cells. We concluded that Pax5 is more suitable than anti-CD20 for 3D B cell quantification in GCs. The substantial unstained volume in GCs raises the question of whether other cell types fill these open spaces. Our 3D investigation enabled a unique morphological and volumetric evaluation of GC cells that balance their overall volumes in GCs.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065128123000818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Germinal centers (GCs) are some of the most important structures in the human immune system. As such, their cell types and functions have been thoroughly investigated. B cells, T cells, follicular dendritic cells (FDCs), and macrophages have widely been found to typically be aggregated in GCs. However, the amount of space occupied by each of these cell types has yet to be investigated. In this study, we conducted confocal laser-based 3D cell-volume quantification of typical GC cells under reactive conditions in lymphadenitis and investigated how volume proportions change during GC development. For this investigation, we used anti-CD3 (T cells), anti-CD20 and anti-Pax5 (B cells), anti-CD23 (FDCs), anti-CD68 (macrophages), and DAPI (nuclear staining). We detected average proportions of about 11% CD3, 9% CD20, 6% CD23, and 2% CD68 in the largest possible regions of interest within GCs. Interestingly, these values remained steady relatively independent of GC size. The remarkably low B cell proportion can be attributed to technical constraints given the use of the CD20 antibody in 3D. Applying the B cell marker Pax5, we found that about 44% of the volume was occupied by B cells after extrapolating the volume of B cell nuclei to that of whole B cells. We concluded that Pax5 is more suitable than anti-CD20 for 3D B cell quantification in GCs. The substantial unstained volume in GCs raises the question of whether other cell types fill these open spaces. Our 3D investigation enabled a unique morphological and volumetric evaluation of GC cells that balance their overall volumes in GCs.