{"title":"Novel beta-glucocerebrosidase chaperone compounds identified from cell-based screening reduce pathologically accumulated glucosylsphingosine in iPS-derived neuronal cells","authors":"Yusuke Naito, Sou Sakamoto, Takuto Kojima, Misaki Homma, Maiko Tanaka, Hideki Matsui","doi":"10.1016/j.slasd.2023.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>The beta-glucocerebrosidase (<em>GBA1</em>) gene encodes the lysosomal beta-glucocerebrosidase (GCase) that metabolizes the lipids glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Biallelic loss-of-function mutations in <em>GBA1</em> such as L444P cause Gaucher disease (GD), which is the most prevalent lysosomal storage disease and is histopathologically characterized by abnormal accumulation of the GCase substrates GlcCer and GlcSph. GD with neurological symptoms is associated with severe mutations in the <em>GBA1</em> gene, most of which cause impairment in the process of GCase trafficking to lysosomes. Given that recombinant GCase protein cannot cross the blood-brain barrier due to its high molecular weight, it is invaluable to develop a brain-penetrant small-molecule pharmacological chaperone as a viable therapeutic strategy to boost GCase activity in the central nervous system.</p><p>Despite considerable efforts to screen potent GCase activators/chaperones, cell-free assays using recombinant GCase protein have yielded compounds with only marginal efficacy and micromolar EC<sub>50</sub> that would not have sufficient clinical efficacy or an acceptable safety margin. Therefore, we utilized a fluorescence-labeled GCase suicide inhibitor, MDW933, to directly monitor lysosomal GCase activity and performed a cell-based screening in fibroblasts from a GD patient with homozygotic L444P mutations. Here, we identified novel compounds that increase the fluorescence signal from labeled GCase with L444P mutations in a dose-dependent manner. Secondary assays using an artificial cell-permeable lysosomal GCase substrate also demonstrated that the identified compounds augment lysosomal GCase L444P in the fibroblast. Moreover, those compounds increased the total GCase L444P protein levels, suggesting the pharmacological chaperone-like mechanism of action. To further elucidate the effect of the compounds on the endogenous GCase substrate GlcSph, we generated iPSC-derived dopaminergic neurons with a <em>GBA1</em> L444P mutation that exhibit GlcSph accumulation in vitro. Importantly, the identified compounds reduce GlcSph in iPSC-derived dopaminergic neurons with a <em>GBA1</em> L444P mutation, indicating that the increase in lysosomal GCase resulting from application of the compounds leads to the clearance of pathologically-accumulated GlcSph. Together, our findings pave the way for developing potent and efficacious GCase chaperone compounds as a potential therapeutic approach for neurological GD.</p></div>","PeriodicalId":21764,"journal":{"name":"SLAS Discovery","volume":"28 7","pages":"Pages 344-349"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Discovery","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555223000485","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
The beta-glucocerebrosidase (GBA1) gene encodes the lysosomal beta-glucocerebrosidase (GCase) that metabolizes the lipids glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Biallelic loss-of-function mutations in GBA1 such as L444P cause Gaucher disease (GD), which is the most prevalent lysosomal storage disease and is histopathologically characterized by abnormal accumulation of the GCase substrates GlcCer and GlcSph. GD with neurological symptoms is associated with severe mutations in the GBA1 gene, most of which cause impairment in the process of GCase trafficking to lysosomes. Given that recombinant GCase protein cannot cross the blood-brain barrier due to its high molecular weight, it is invaluable to develop a brain-penetrant small-molecule pharmacological chaperone as a viable therapeutic strategy to boost GCase activity in the central nervous system.
Despite considerable efforts to screen potent GCase activators/chaperones, cell-free assays using recombinant GCase protein have yielded compounds with only marginal efficacy and micromolar EC50 that would not have sufficient clinical efficacy or an acceptable safety margin. Therefore, we utilized a fluorescence-labeled GCase suicide inhibitor, MDW933, to directly monitor lysosomal GCase activity and performed a cell-based screening in fibroblasts from a GD patient with homozygotic L444P mutations. Here, we identified novel compounds that increase the fluorescence signal from labeled GCase with L444P mutations in a dose-dependent manner. Secondary assays using an artificial cell-permeable lysosomal GCase substrate also demonstrated that the identified compounds augment lysosomal GCase L444P in the fibroblast. Moreover, those compounds increased the total GCase L444P protein levels, suggesting the pharmacological chaperone-like mechanism of action. To further elucidate the effect of the compounds on the endogenous GCase substrate GlcSph, we generated iPSC-derived dopaminergic neurons with a GBA1 L444P mutation that exhibit GlcSph accumulation in vitro. Importantly, the identified compounds reduce GlcSph in iPSC-derived dopaminergic neurons with a GBA1 L444P mutation, indicating that the increase in lysosomal GCase resulting from application of the compounds leads to the clearance of pathologically-accumulated GlcSph. Together, our findings pave the way for developing potent and efficacious GCase chaperone compounds as a potential therapeutic approach for neurological GD.
期刊介绍:
Advancing Life Sciences R&D: SLAS Discovery reports how scientists develop and utilize novel technologies and/or approaches to provide and characterize chemical and biological tools to understand and treat human disease.
SLAS Discovery is a peer-reviewed journal that publishes scientific reports that enable and improve target validation, evaluate current drug discovery technologies, provide novel research tools, and incorporate research approaches that enhance depth of knowledge and drug discovery success.
SLAS Discovery emphasizes scientific and technical advances in target identification/validation (including chemical probes, RNA silencing, gene editing technologies); biomarker discovery; assay development; virtual, medium- or high-throughput screening (biochemical and biological, biophysical, phenotypic, toxicological, ADME); lead generation/optimization; chemical biology; and informatics (data analysis, image analysis, statistics, bio- and chemo-informatics). Review articles on target biology, new paradigms in drug discovery and advances in drug discovery technologies.
SLAS Discovery is of particular interest to those involved in analytical chemistry, applied microbiology, automation, biochemistry, bioengineering, biomedical optics, biotechnology, bioinformatics, cell biology, DNA science and technology, genetics, information technology, medicinal chemistry, molecular biology, natural products chemistry, organic chemistry, pharmacology, spectroscopy, and toxicology.
SLAS Discovery is a member of the Committee on Publication Ethics (COPE) and was published previously (1996-2016) as the Journal of Biomolecular Screening (JBS).