Metabolic perturbations and key pathways associated with the bacteriostatic activity of Clitoria ternatea flower anthocyanin fraction against Escherichia coli.
{"title":"Metabolic perturbations and key pathways associated with the bacteriostatic activity of <i>Clitoria ternatea</i> flower anthocyanin fraction against <i>Escherichia coli</i>.","authors":"Ethel Jeyaseela Jeyaraj, Mei-Ling Han, Jian Li, Wee Sim Choo","doi":"10.1099/acmi.0.000535.v5","DOIUrl":null,"url":null,"abstract":"<p><p><i>Clitoria ternatea</i> flowers are rich in anthocyanins and possess various biological activities. Specifically, the antibacterial mechanism of action of <i>C. ternatea</i> anthocyanins remains unknown and was investigated in <i>Escherichia coli</i> . A time-kill assay was used to assess the antibacterial activity and the metabolic perturbations in <i>E. coli</i> were investigated utilizing liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. Pathway analyses were carried out for metabolites showing ≥2-fold changes. The anthocyanin fraction remarkably reduced the growth of <i>E. coli</i> at 4 h by 95.8 and 99.9 % at minimum inhibitory concentration (MIC) and 2× MIC, respectively. The anthocyanin fraction (MIC) had a bacteriostatic effect and was shown to have perturbed glycerophospholipids (1-acyl-sn-glycero-3-phosphoethanolamine, phosphatidylglycerol, diacylglycerol and cardiolipin), amino acids (valine, tyrosine and isoleucine) and energy (ubiquinone and NAD) metabolites at 1 and 4 h. This study demonstrated significant metabolic perturbations of the glycerophospholipid, amino acid and energy metabolism, with these being the key pathways involved in the bacteriostatic activity of anthocyanins from <i>C. ternatea</i>, which may have promise as bacteriostatic agents for <i>E. coli</i> -related infections.</p>","PeriodicalId":6956,"journal":{"name":"Access Microbiology","volume":"5 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Access Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1099/acmi.0.000535.v5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Clitoria ternatea flowers are rich in anthocyanins and possess various biological activities. Specifically, the antibacterial mechanism of action of C. ternatea anthocyanins remains unknown and was investigated in Escherichia coli . A time-kill assay was used to assess the antibacterial activity and the metabolic perturbations in E. coli were investigated utilizing liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. Pathway analyses were carried out for metabolites showing ≥2-fold changes. The anthocyanin fraction remarkably reduced the growth of E. coli at 4 h by 95.8 and 99.9 % at minimum inhibitory concentration (MIC) and 2× MIC, respectively. The anthocyanin fraction (MIC) had a bacteriostatic effect and was shown to have perturbed glycerophospholipids (1-acyl-sn-glycero-3-phosphoethanolamine, phosphatidylglycerol, diacylglycerol and cardiolipin), amino acids (valine, tyrosine and isoleucine) and energy (ubiquinone and NAD) metabolites at 1 and 4 h. This study demonstrated significant metabolic perturbations of the glycerophospholipid, amino acid and energy metabolism, with these being the key pathways involved in the bacteriostatic activity of anthocyanins from C. ternatea, which may have promise as bacteriostatic agents for E. coli -related infections.