Song Tan, Juan Li, Qiao Yang, Jinzhong Fu, Jingfeng Chen
{"title":"Light/dark phase influences intra-individual plasticity in maintenance metabolic rate and exploratory behavior independently in the Asiatic toad.","authors":"Song Tan, Juan Li, Qiao Yang, Jinzhong Fu, Jingfeng Chen","doi":"10.1186/s40850-022-00139-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>It is well-known that light/dark phase can affect energy expenditure and behaviors of most organisms; however, its influences on individuality (inter-individual variance) and plasticity (intra-individual variance), as well as their associations remain unclear. To approach this question, we repeatedly measured maintenance metabolic rate (MR), exploratory and risk-taking behaviors across light/dark phase four times using wild-caught female Asiatic toads (Bufo gargarizans), and partitioned their variance components with univariate and bivariate mixed-effects models.</p><p><strong>Results: </strong>The group means of maintenance MR and risk-taking behavior increased at night, while the group mean of exploratory behavior remained constant throughout the day. At night, the intra-individual variances were elevated in maintenance MR but reduced in exploration, suggesting that phenotypic plasticity was enhanced in the former but constrained in the latter. In addition, maintenance MR was not coupled with exploratory or risk-taking behaviors in daytime or at night, neither at the inter-individual nor intra-individual levels.</p><p><strong>Conclusions: </strong>Our findings suggest that these traits are independently modulated by the light/dark phase, and an allocation energy management model may be applicable in this species. This study sheds new insights into how amphibians adapt nocturnal lifestyle across multiple hierarchy levels via metabolic and behavioral adjustments.</p>","PeriodicalId":48590,"journal":{"name":"BMC Zoology","volume":"7 1","pages":"39"},"PeriodicalIF":1.4000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127016/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40850-022-00139-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Background: It is well-known that light/dark phase can affect energy expenditure and behaviors of most organisms; however, its influences on individuality (inter-individual variance) and plasticity (intra-individual variance), as well as their associations remain unclear. To approach this question, we repeatedly measured maintenance metabolic rate (MR), exploratory and risk-taking behaviors across light/dark phase four times using wild-caught female Asiatic toads (Bufo gargarizans), and partitioned their variance components with univariate and bivariate mixed-effects models.
Results: The group means of maintenance MR and risk-taking behavior increased at night, while the group mean of exploratory behavior remained constant throughout the day. At night, the intra-individual variances were elevated in maintenance MR but reduced in exploration, suggesting that phenotypic plasticity was enhanced in the former but constrained in the latter. In addition, maintenance MR was not coupled with exploratory or risk-taking behaviors in daytime or at night, neither at the inter-individual nor intra-individual levels.
Conclusions: Our findings suggest that these traits are independently modulated by the light/dark phase, and an allocation energy management model may be applicable in this species. This study sheds new insights into how amphibians adapt nocturnal lifestyle across multiple hierarchy levels via metabolic and behavioral adjustments.
BMC ZoologyAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
2.30
自引率
6.20%
发文量
53
审稿时长
24 weeks
期刊介绍:
BMC Zoology is an open access, peer-reviewed journal that considers articles on all aspects of zoology, including physiology, mechanistic and functional studies, anatomy, life history, behavior, signalling and communication, cognition, parasitism, taxonomy and conservation.