Implant-Abutment Connections and Their Effect on Implant Survival Rates and Changes in Marginal Bone Levels (Δ): A Systematic Review and Meta-Analysis of 45,347 Oral Implants.
Todd R Schoenbaum, E Dwayne Karateew, Angela Schmidt, Chaniun Jadsadakraisorn, Jörg Neugebauer, Clark M Stanford
{"title":"Implant-Abutment Connections and Their Effect on Implant Survival Rates and Changes in Marginal Bone Levels (Δ): A Systematic Review and Meta-Analysis of 45,347 Oral Implants.","authors":"Todd R Schoenbaum, E Dwayne Karateew, Angela Schmidt, Chaniun Jadsadakraisorn, Jörg Neugebauer, Clark M Stanford","doi":"10.11607/jomi.10411","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose:</b> To quantify the cumulative oral implant survival rates and changes in radiographic bone levels based on the configuration of the implant-abutment connection type over time. <b>Materials and Methods:</b> An electronic literature search was conducted in four databases (PubMed/MEDLINE, Cochrane Library, Web of Science, and Embase), and records were refereed by two independent reviewers based on the inclusion criteria. Data from included articles were grouped by implant-abutment connection type into four categories (<i>[1]</i> external hex; <i>[2]</i> bone level, internal, narrow cone < 45 degrees; <i>[3]</i> bone level, internal wide cone ≥ 45 degrees or flat; and <i>[4]</i> tissue level) and duration of follow-up (short-term 1 to 2 years, mid-term 2 to 5 years, and long-term > 5 years). Meta-analyses were performed for cumulative survival rate (CSR) and changes in marginal bone level (ΔMBL) from baseline (loading) to last reported follow-up. Studies were split or merged as appropriate based on the implants and follow-up duration in the study and trial design. The study was compiled under PRISMA 2020 guidelines and registered in the PROSPERO database. <b>Results:</b> A total of 3,082 articles were screened. Full-text review of 465 articles resulted in a total of 270 articles (representing 16,448 subjects with 45,347 implants) included for quantitative synthesis and analysis. Mean ΔMBL (95% CI) was as follows: short-term external hex = 0.68 mm (0.57, 0.79); short-term bone level, internal, narrow cone < 45 degrees = 0.34 mm (0.25, 0.43); short-term bone level, internal wide cone ≥ 45 degrees = 0.63 mm (0.52, 0.74); short-term tissue level = 0.42 mm (0.27, 0.56); mid-term external hex = 1.03 mm (0.72, 1.34); mid-term bone level, internal, narrow cone < 45 degrees = 0.45 mm (0.34, 0.56); mid-term bone level, internal wide cone ≥ 45 degrees = 0.73 mm (0.58, 0.88); mid-term tissue level = 0.4 mm (0.21, 0.61); long-term external hex = 0.98 mm, 0.70, 1.25); long-term bone level, internal, narrow cone < 45 degrees = 0.44 mm (0.31, 0.57); long-term bone level, internal wide cone ≥ 45 degrees = 0.95 mm (0.68, 1.22); and long-term tissue level = 0.43 mm (0.24, 0.61). CSRs (95% CI) were: short-term external hex = 97% (96%, 98%); short-term bone level, internal, narrow cone < 45 degrees = 99% (99%, 99%); short-term bone level, internal wide cone ≥ 45 degrees = 98% (98%, 99%); short-term tissue level = 99% (98%, 100%); mid-term external hex = 97% (96%, 98%); mid-term bone level, internal, narrow cone < 45 degrees = 98% (98%, 99%); mid-term bone level, internal wide cone ≥ 45 degrees = 99% (98%, 99%); mid-term tissue level = 98% (97%, 99%); long-term external hex = 96% (95%, 98%); long-term bone level, internal, narrow cone < 45 degrees = 98% (98%, 99%); long-term bone level, internal wide cone ≥ 45 degrees = 99% (98%, 100%); and long-term tissue level = 99% (98%, 100%). <b>Conclusion:</b> The configuration of the implant-abutment interface has a measurable effect on the ΔMBL over time. These changes can be observed over a period of at least 3 to 5 years. At all measured time intervals, similar ΔMBL was noted for external hex and internal wide cone ≥ 45-degree connections, as were internal, narrow cone < 45-degree and tissue-level connections.</p>","PeriodicalId":50298,"journal":{"name":"International Journal of Oral & Maxillofacial Implants","volume":"38 suppl","pages":"37-45"},"PeriodicalIF":1.7000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral & Maxillofacial Implants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.11607/jomi.10411","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To quantify the cumulative oral implant survival rates and changes in radiographic bone levels based on the configuration of the implant-abutment connection type over time. Materials and Methods: An electronic literature search was conducted in four databases (PubMed/MEDLINE, Cochrane Library, Web of Science, and Embase), and records were refereed by two independent reviewers based on the inclusion criteria. Data from included articles were grouped by implant-abutment connection type into four categories ([1] external hex; [2] bone level, internal, narrow cone < 45 degrees; [3] bone level, internal wide cone ≥ 45 degrees or flat; and [4] tissue level) and duration of follow-up (short-term 1 to 2 years, mid-term 2 to 5 years, and long-term > 5 years). Meta-analyses were performed for cumulative survival rate (CSR) and changes in marginal bone level (ΔMBL) from baseline (loading) to last reported follow-up. Studies were split or merged as appropriate based on the implants and follow-up duration in the study and trial design. The study was compiled under PRISMA 2020 guidelines and registered in the PROSPERO database. Results: A total of 3,082 articles were screened. Full-text review of 465 articles resulted in a total of 270 articles (representing 16,448 subjects with 45,347 implants) included for quantitative synthesis and analysis. Mean ΔMBL (95% CI) was as follows: short-term external hex = 0.68 mm (0.57, 0.79); short-term bone level, internal, narrow cone < 45 degrees = 0.34 mm (0.25, 0.43); short-term bone level, internal wide cone ≥ 45 degrees = 0.63 mm (0.52, 0.74); short-term tissue level = 0.42 mm (0.27, 0.56); mid-term external hex = 1.03 mm (0.72, 1.34); mid-term bone level, internal, narrow cone < 45 degrees = 0.45 mm (0.34, 0.56); mid-term bone level, internal wide cone ≥ 45 degrees = 0.73 mm (0.58, 0.88); mid-term tissue level = 0.4 mm (0.21, 0.61); long-term external hex = 0.98 mm, 0.70, 1.25); long-term bone level, internal, narrow cone < 45 degrees = 0.44 mm (0.31, 0.57); long-term bone level, internal wide cone ≥ 45 degrees = 0.95 mm (0.68, 1.22); and long-term tissue level = 0.43 mm (0.24, 0.61). CSRs (95% CI) were: short-term external hex = 97% (96%, 98%); short-term bone level, internal, narrow cone < 45 degrees = 99% (99%, 99%); short-term bone level, internal wide cone ≥ 45 degrees = 98% (98%, 99%); short-term tissue level = 99% (98%, 100%); mid-term external hex = 97% (96%, 98%); mid-term bone level, internal, narrow cone < 45 degrees = 98% (98%, 99%); mid-term bone level, internal wide cone ≥ 45 degrees = 99% (98%, 99%); mid-term tissue level = 98% (97%, 99%); long-term external hex = 96% (95%, 98%); long-term bone level, internal, narrow cone < 45 degrees = 98% (98%, 99%); long-term bone level, internal wide cone ≥ 45 degrees = 99% (98%, 100%); and long-term tissue level = 99% (98%, 100%). Conclusion: The configuration of the implant-abutment interface has a measurable effect on the ΔMBL over time. These changes can be observed over a period of at least 3 to 5 years. At all measured time intervals, similar ΔMBL was noted for external hex and internal wide cone ≥ 45-degree connections, as were internal, narrow cone < 45-degree and tissue-level connections.
期刊介绍:
Edited by Steven E. Eckert, DDS, MS ISSN (Print): 0882-2786
ISSN (Online): 1942-4434
This highly regarded, often-cited journal integrates clinical and scientific data to improve methods and results of oral and maxillofacial implant therapy. It presents pioneering research, technology, clinical applications, reviews of the literature, seminal studies, emerging technology, position papers, and consensus studies, as well as the many clinical and therapeutic innovations that ensue as a result of these efforts. The editorial board is composed of recognized opinion leaders in their respective areas of expertise and reflects the international reach of the journal. Under their leadership, JOMI maintains its strong scientific integrity while expanding its influence within the field of implant dentistry. JOMI’s popular regular feature "Thematic Abstract Review" presents a review of abstracts of recently published articles on a specific topical area of interest each issue.