Artificial intelligence for fracture diagnosis in orthopedic X-rays: current developments and future potential.

IF 1.8 Q2 ORTHOPEDICS
SICOT-J Pub Date : 2023-01-01 Epub Date: 2023-07-06 DOI:10.1051/sicotj/2023018
Sanskrati Sharma
{"title":"Artificial intelligence for fracture diagnosis in orthopedic X-rays: current developments and future potential.","authors":"Sanskrati Sharma","doi":"10.1051/sicotj/2023018","DOIUrl":null,"url":null,"abstract":"<p><p>The use of artificial intelligence (AI) in the interpretation of orthopedic X-rays has shown great potential to improve the accuracy and efficiency of fracture diagnosis. AI algorithms rely on large datasets of annotated images to learn how to accurately classify and diagnose abnormalities. One way to improve AI interpretation of X-rays is to increase the size and quality of the datasets used for training, and to incorporate more advanced machine learning techniques, such as deep reinforcement learning, into the algorithms. Another approach is to integrate AI algorithms with other imaging modalities, such as computed tomography (CT) scans, and magnetic resonance imaging (MRI), to provide a more comprehensive and accurate diagnosis. Recent studies have shown that AI algorithms can accurately detect and classify fractures of the wrist and long bones on X-ray images, demonstrating the potential of AI to improve the accuracy and efficiency of fracture diagnosis. These findings suggest that AI has the potential to significantly improve patient outcomes in the field of orthopedics.</p>","PeriodicalId":46378,"journal":{"name":"SICOT-J","volume":"9 ","pages":"21"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10324466/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICOT-J","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/sicotj/2023018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

The use of artificial intelligence (AI) in the interpretation of orthopedic X-rays has shown great potential to improve the accuracy and efficiency of fracture diagnosis. AI algorithms rely on large datasets of annotated images to learn how to accurately classify and diagnose abnormalities. One way to improve AI interpretation of X-rays is to increase the size and quality of the datasets used for training, and to incorporate more advanced machine learning techniques, such as deep reinforcement learning, into the algorithms. Another approach is to integrate AI algorithms with other imaging modalities, such as computed tomography (CT) scans, and magnetic resonance imaging (MRI), to provide a more comprehensive and accurate diagnosis. Recent studies have shown that AI algorithms can accurately detect and classify fractures of the wrist and long bones on X-ray images, demonstrating the potential of AI to improve the accuracy and efficiency of fracture diagnosis. These findings suggest that AI has the potential to significantly improve patient outcomes in the field of orthopedics.

Abstract Image

Abstract Image

人工智能用于骨科 X 射线的骨折诊断:当前发展和未来潜力。
人工智能(AI)在骨科 X 射线判读中的应用已显示出提高骨折诊断准确性和效率的巨大潜力。人工智能算法依靠注释图像的大型数据集来学习如何准确分类和诊断异常。改进 X 射线人工智能判读的一种方法是提高用于训练的数据集的规模和质量,并将更先进的机器学习技术(如深度强化学习)纳入算法。另一种方法是将人工智能算法与计算机断层扫描(CT)和磁共振成像(MRI)等其他成像方式相结合,以提供更全面、更准确的诊断。最近的研究表明,人工智能算法可以准确检测 X 光图像上的腕骨和长骨骨折并对其进行分类,这表明人工智能具有提高骨折诊断准确性和效率的潜力。这些研究结果表明,人工智能有可能显著改善骨科领域患者的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SICOT-J
SICOT-J ORTHOPEDICS-
CiteScore
3.20
自引率
12.50%
发文量
44
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信