Wenyi Lin, Jingjing Zou, Chongzhi Di, Dorothy D Sears, Cheryl L Rock, Loki Natarajan
{"title":"Longitudinal Associations Between Timing of Physical Activity Accumulation and Health: Application of Functional Data Methods.","authors":"Wenyi Lin, Jingjing Zou, Chongzhi Di, Dorothy D Sears, Cheryl L Rock, Loki Natarajan","doi":"10.1007/s12561-022-09359-1","DOIUrl":null,"url":null,"abstract":"<p><p>Accelerometers are widely used for tracking human movement and provide minute-level (or even 30 Hz level) physical activity (PA) records for detailed analysis. Instead of using day-level summary statistics to assess these densely sampled inputs, we implement functional principal component analysis (FPCA) approaches to study the temporal patterns of PA data from 245 overweight/obese women at three visits over a 1-year period. We apply longitudinal FPCA to decompose PA inputs, incorporating subject-specific variability, and then test the association between these patterns and obesity-related health outcomes by multiple mixed effect regression models. With the proposed methods, the longitudinal patterns in both densely sampled inputs and scalar outcomes are investigated and connected. The results show that the health outcomes are strongly associated with PA variation, in both subject and visit-level. In addition, we reveal that timing of PA during the day can impact changes in outcomes, a finding that would not be possible with day-level PA summaries. Thus, our findings imply that the use of longitudinal FPCA can elucidate temporal patterns of multiple levels of PA inputs. Furthermore, the exploration of the relationship between PA patterns and health outcomes can be useful for establishing weight-loss guidelines.</p>","PeriodicalId":45094,"journal":{"name":"Statistics in Biosciences","volume":"15 2","pages":"309-329"},"PeriodicalIF":0.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299778/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-022-09359-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accelerometers are widely used for tracking human movement and provide minute-level (or even 30 Hz level) physical activity (PA) records for detailed analysis. Instead of using day-level summary statistics to assess these densely sampled inputs, we implement functional principal component analysis (FPCA) approaches to study the temporal patterns of PA data from 245 overweight/obese women at three visits over a 1-year period. We apply longitudinal FPCA to decompose PA inputs, incorporating subject-specific variability, and then test the association between these patterns and obesity-related health outcomes by multiple mixed effect regression models. With the proposed methods, the longitudinal patterns in both densely sampled inputs and scalar outcomes are investigated and connected. The results show that the health outcomes are strongly associated with PA variation, in both subject and visit-level. In addition, we reveal that timing of PA during the day can impact changes in outcomes, a finding that would not be possible with day-level PA summaries. Thus, our findings imply that the use of longitudinal FPCA can elucidate temporal patterns of multiple levels of PA inputs. Furthermore, the exploration of the relationship between PA patterns and health outcomes can be useful for establishing weight-loss guidelines.
期刊介绍:
Statistics in Biosciences (SIBS) is published three times a year in print and electronic form. It aims at development and application of statistical methods and their interface with other quantitative methods, such as computational and mathematical methods, in biological and life science, health science, and biopharmaceutical and biotechnological science.
SIBS publishes scientific papers and review articles in four sections, with the first two sections as the primary sections. Original Articles publish novel statistical and quantitative methods in biosciences. The Bioscience Case Studies and Practice Articles publish papers that advance statistical practice in biosciences, such as case studies, innovative applications of existing methods that further understanding of subject-matter science, evaluation of existing methods and data sources. Review Articles publish papers that review an area of statistical and quantitative methodology, software, and data sources in biosciences. Commentaries provide perspectives of research topics or policy issues that are of current quantitative interest in biosciences, reactions to an article published in the journal, and scholarly essays. Substantive science is essential in motivating and demonstrating the methodological development and use for an article to be acceptable. Articles published in SIBS share the goal of promoting evidence-based real world practice and policy making through effective and timely interaction and communication of statisticians and quantitative researchers with subject-matter scientists in biosciences.