Udo Boehm, Nathan J Evans, Quentin F Gronau, Dora Matzke, Eric-Jan Wagenmakers, Andrew J Heathcote
{"title":"Inclusion Bayes factors for mixed hierarchical diffusion decision models.","authors":"Udo Boehm, Nathan J Evans, Quentin F Gronau, Dora Matzke, Eric-Jan Wagenmakers, Andrew J Heathcote","doi":"10.1037/met0000582","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive models provide a substantively meaningful quantitative description of latent cognitive processes. The quantitative formulation of these models supports cumulative theory building and enables strong empirical tests. However, the nonlinearity of these models and pervasive correlations among model parameters pose special challenges when applying cognitive models to data. Firstly, estimating cognitive models typically requires large hierarchical data sets that need to be accommodated by an appropriate statistical structure within the model. Secondly, statistical inference needs to appropriately account for model uncertainty to avoid overconfidence and biased parameter estimates. In the present work, we show how these challenges can be addressed through a combination of Bayesian hierarchical modeling and Bayesian model averaging. To illustrate these techniques, we apply the popular diffusion decision model to data from a collaborative selective influence study. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":"625-655"},"PeriodicalIF":7.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000582","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cognitive models provide a substantively meaningful quantitative description of latent cognitive processes. The quantitative formulation of these models supports cumulative theory building and enables strong empirical tests. However, the nonlinearity of these models and pervasive correlations among model parameters pose special challenges when applying cognitive models to data. Firstly, estimating cognitive models typically requires large hierarchical data sets that need to be accommodated by an appropriate statistical structure within the model. Secondly, statistical inference needs to appropriately account for model uncertainty to avoid overconfidence and biased parameter estimates. In the present work, we show how these challenges can be addressed through a combination of Bayesian hierarchical modeling and Bayesian model averaging. To illustrate these techniques, we apply the popular diffusion decision model to data from a collaborative selective influence study. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.