Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster.

Erica Ehrhardt, Samuel C Whitehead, Shigehiro Namiki, Ryo Minegishi, Igor Siwanowicz, Kai Feng, Hideo Otsuna, Geoffrey W Meissner, David Stern, Jim Truman, David Shepherd, Michael H Dickinson, Kei Ito, Barry J Dickson, Itai Cohen, Gwyneth M Card, Wyatt Korff
{"title":"Single-cell type analysis of wing premotor circuits in the ventral nerve cord of <i>Drosophila melanogaster</i>.","authors":"Erica Ehrhardt, Samuel C Whitehead, Shigehiro Namiki, Ryo Minegishi, Igor Siwanowicz, Kai Feng, Hideo Otsuna, Geoffrey W Meissner, David Stern, Jim Truman, David Shepherd, Michael H Dickinson, Kei Ito, Barry J Dickson, Itai Cohen, Gwyneth M Card, Wyatt Korff","doi":"10.1101/2023.05.31.542897","DOIUrl":null,"url":null,"abstract":"<p><p>To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their functions. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse transgenic driver lines targeting 196 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. In addition, we identified correspondences between the cells in this collection and a recent connectomic data set of the ventral nerve cord. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neuronal circuits and connectivity of premotor circuits while linking them to behavioral outputs.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312520/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.05.31.542897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their functions. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse transgenic driver lines targeting 196 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. In addition, we identified correspondences between the cells in this collection and a recent connectomic data set of the ventral nerve cord. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neuronal circuits and connectivity of premotor circuits while linking them to behavioral outputs.

Abstract Image

Abstract Image

Abstract Image

黑腹果蝇腹神经索中翅膀前运动回路的单细胞类型分析。
为了执行大多数行为,动物必须从大脑中的高级处理中心向位于不同于大脑的神经节中的前运动回路发送命令,例如哺乳动物的脊髓或昆虫的腹神经脊髓。这些回路是如何在功能上组织起来以产生动物行为的巨大多样性的,目前尚不清楚。解开前运动回路组织的重要第一步是识别其组成细胞类型,并创建工具来监测和操纵这些细胞,以评估其功能。这可能发生在苍蝇可伸缩的腹侧神经索中。为了生成这样一个工具包,我们使用组合遗传技术(split-GAL4)创建了195个稀疏驱动系,靶向腹侧神经索中的198个个体细胞类型。其中包括翅膀和笼头运动神经元、调节神经元和中间神经元。通过结合行为、发育和解剖分析,我们系统地描述了我们收集的目标细胞类型。总之,这里提供的资源和结果形成了一个强大的工具包,用于未来研究神经回路和前运动回路的连接性,同时将它们与行为输出联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信