Pharmacokinetic Study of 14C-Radiolabeled p-Boronophenylalanine (BPA) in Sorbitol Solution and the Treatment Outcome of BPA-Based Boron Neutron Capture Therapy on a Tumor-Bearing Mouse Model.
Tsubasa Watanabe, Tomohiro Yoshikawa, Hiroki Tanaka, Yuko Kinashi, Genro Kashino, Shin-Ichiro Masunaga, Toshimitsu Hayashi, Koki Uehara, Koji Ono, Minoru Suzuki
{"title":"Pharmacokinetic Study of <sup>14</sup>C-Radiolabeled p-Boronophenylalanine (BPA) in Sorbitol Solution and the Treatment Outcome of BPA-Based Boron Neutron Capture Therapy on a Tumor-Bearing Mouse Model.","authors":"Tsubasa Watanabe, Tomohiro Yoshikawa, Hiroki Tanaka, Yuko Kinashi, Genro Kashino, Shin-Ichiro Masunaga, Toshimitsu Hayashi, Koki Uehara, Koji Ono, Minoru Suzuki","doi":"10.1007/s13318-023-00830-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Boron neutron capture therapy (BNCT) is a binary cancer treatment that combines boron administration and neutron irradiation. The tumor cells take up the boron compound and the subsequent neutron irradiation results in a nuclear fission reaction caused by the neutron capture reaction of the boron nuclei. This produces highly cytocidal heavy particles, leading to the destruction of tumor cells. p-boronophenylalanine (BPA) is widely used in BNCT but is insoluble in water and requires reducing sugar or sugar alcohol as a dissolvent to create an aqueous solution for administration. The purpose of this study was to investigate the pharmacokinetics of <sup>14</sup>C-radiolabeled BPA using sorbitol as a dissolvent, which has not been reported before, and confirm whether neutron irradiation with a sorbitol solution of BPA can produce an antitumor effect of BNCT.</p><p><strong>Materials and methods: </strong>In this study, we evaluated the sugar alcohol, sorbitol, as a novel dissolution aid and examined the consequent stability of the BPA for long-term storage. U-87 MG and SAS tumor cell lines were used for in vitro and in vivo experiments. We examined the pharmacokinetics of <sup>14</sup>C-radiolabeled BPA in sorbitol solution, administered either intravenously or subcutaneously to a mouse tumor model. Neutron irradiation was performed in conjunction with the administration of BPA in sorbitol solution using the same tumor cell lines both in vitro and in vivo.</p><p><strong>Results: </strong>We found that BPA in sorbitol solution maintains stability for longer than in fructose solution, and can therefore be stored for a longer period. Pharmacokinetic studies with <sup>14</sup>C-radiolabeled BPA confirmed that the sorbitol solution of BPA distributed through tumors in much the same way as BPA in fructose. Neutron irradiation was found to produce dose-dependent antitumor effects, both in vitro and in vivo, after the administration of BPA in sorbitol solution.</p><p><strong>Conclusion: </strong>In this report, we demonstrate the efficacy of BPA in sorbitol solution as the boron source in BNCT.</p>","PeriodicalId":11939,"journal":{"name":"European Journal of Drug Metabolism and Pharmacokinetics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13318-023-00830-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objective: Boron neutron capture therapy (BNCT) is a binary cancer treatment that combines boron administration and neutron irradiation. The tumor cells take up the boron compound and the subsequent neutron irradiation results in a nuclear fission reaction caused by the neutron capture reaction of the boron nuclei. This produces highly cytocidal heavy particles, leading to the destruction of tumor cells. p-boronophenylalanine (BPA) is widely used in BNCT but is insoluble in water and requires reducing sugar or sugar alcohol as a dissolvent to create an aqueous solution for administration. The purpose of this study was to investigate the pharmacokinetics of 14C-radiolabeled BPA using sorbitol as a dissolvent, which has not been reported before, and confirm whether neutron irradiation with a sorbitol solution of BPA can produce an antitumor effect of BNCT.
Materials and methods: In this study, we evaluated the sugar alcohol, sorbitol, as a novel dissolution aid and examined the consequent stability of the BPA for long-term storage. U-87 MG and SAS tumor cell lines were used for in vitro and in vivo experiments. We examined the pharmacokinetics of 14C-radiolabeled BPA in sorbitol solution, administered either intravenously or subcutaneously to a mouse tumor model. Neutron irradiation was performed in conjunction with the administration of BPA in sorbitol solution using the same tumor cell lines both in vitro and in vivo.
Results: We found that BPA in sorbitol solution maintains stability for longer than in fructose solution, and can therefore be stored for a longer period. Pharmacokinetic studies with 14C-radiolabeled BPA confirmed that the sorbitol solution of BPA distributed through tumors in much the same way as BPA in fructose. Neutron irradiation was found to produce dose-dependent antitumor effects, both in vitro and in vivo, after the administration of BPA in sorbitol solution.
Conclusion: In this report, we demonstrate the efficacy of BPA in sorbitol solution as the boron source in BNCT.
期刊介绍:
Hepatology International is a peer-reviewed journal featuring articles written by clinicians, clinical researchers and basic scientists is dedicated to research and patient care issues in hepatology. This journal focuses mainly on new and emerging diagnostic and treatment options, protocols and molecular and cellular basis of disease pathogenesis, new technologies, in liver and biliary sciences.
Hepatology International publishes original research articles related to clinical care and basic research; review articles; consensus guidelines for diagnosis and treatment; invited editorials, and controversies in contemporary issues. The journal does not publish case reports.