How to improve postgenomic knowledge discovery using imputation.

Muhammad Shoaib B Sehgal, Iqbal Gondal, Laurence S Dooley, Ross Coppel
{"title":"How to improve postgenomic knowledge discovery using imputation.","authors":"Muhammad Shoaib B Sehgal,&nbsp;Iqbal Gondal,&nbsp;Laurence S Dooley,&nbsp;Ross Coppel","doi":"10.1155/2009/717136","DOIUrl":null,"url":null,"abstract":"<p><p>While microarrays make it feasible to rapidly investigate many complex biological problems, their multistep fabrication has the proclivity for error at every stage. The standard tactic has been to either ignore or regard erroneous gene readings as missing values, though this assumption can exert a major influence upon postgenomic knowledge discovery methods like gene selection and gene regulatory network (GRN) reconstruction. This has been the catalyst for a raft of new flexible imputation algorithms including local least square impute and the recent heuristic collateral missing value imputation, which exploit the biological transactional behaviour of functionally correlated genes to afford accurate missing value estimation. This paper examines the influence of missing value imputation techniques upon postgenomic knowledge inference methods with results for various algorithms consistently corroborating that instead of ignoring missing values, recycling microarray data by flexible and robust imputation can provide substantial performance benefits for subsequent downstream procedures.</p>","PeriodicalId":72957,"journal":{"name":"EURASIP journal on bioinformatics & systems biology","volume":" ","pages":"717136"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2009/717136","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP journal on bioinformatics & systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2009/717136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

While microarrays make it feasible to rapidly investigate many complex biological problems, their multistep fabrication has the proclivity for error at every stage. The standard tactic has been to either ignore or regard erroneous gene readings as missing values, though this assumption can exert a major influence upon postgenomic knowledge discovery methods like gene selection and gene regulatory network (GRN) reconstruction. This has been the catalyst for a raft of new flexible imputation algorithms including local least square impute and the recent heuristic collateral missing value imputation, which exploit the biological transactional behaviour of functionally correlated genes to afford accurate missing value estimation. This paper examines the influence of missing value imputation techniques upon postgenomic knowledge inference methods with results for various algorithms consistently corroborating that instead of ignoring missing values, recycling microarray data by flexible and robust imputation can provide substantial performance benefits for subsequent downstream procedures.

Abstract Image

Abstract Image

Abstract Image

如何利用归算改进后基因组知识发现。
虽然微阵列使得快速研究许多复杂的生物学问题成为可能,但它们的多步骤制造在每个阶段都有出错的倾向。标准的策略是要么忽略,要么将错误的基因读数视为缺失值,尽管这种假设可以对基因选择和基因调控网络(GRN)重建等后基因组知识发现方法产生重大影响。这是一系列新的灵活的输入算法的催化剂,包括局部最小二乘输入和最近的启发式抵押品缺失值输入,它们利用功能相关基因的生物交易行为来提供准确的缺失值估计。本文研究了缺失值归算技术对基因组后知识推断方法的影响,各种算法的结果一致地证实,通过灵活和稳健的归算来回收微阵列数据,而不是忽略缺失值,可以为后续的下游程序提供实质性的性能优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信