Parameterizing network graph heterogeneity using a modified Weibull distribution.

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
Sinan A Ozbay, Maximilian M Nguyen
{"title":"Parameterizing network graph heterogeneity using a modified Weibull distribution.","authors":"Sinan A Ozbay,&nbsp;Maximilian M Nguyen","doi":"10.1007/s41109-023-00544-9","DOIUrl":null,"url":null,"abstract":"<p><p>We present a simple method to quantitatively capture the heterogeneity in the degree distribution of a network graph using a single parameter <math><mi>σ</mi></math> . Using an exponential transformation of the shape parameter of the Weibull distribution, this control parameter allows the degree distribution to be easily interpolated between highly symmetric and highly heterogeneous distributions on the unit interval. This parameterization of heterogeneity also recovers several other canonical distributions as intermediate special cases, including the Gaussian, Rayleigh, and exponential distributions. We then outline a general graph generation algorithm to produce graphs with a desired amount of heterogeneity. The utility of this formulation of a heterogeneity parameter is demonstrated with examples relating to epidemiological modeling and spectral analysis.</p>","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144902/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41109-023-00544-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

Abstract

We present a simple method to quantitatively capture the heterogeneity in the degree distribution of a network graph using a single parameter σ . Using an exponential transformation of the shape parameter of the Weibull distribution, this control parameter allows the degree distribution to be easily interpolated between highly symmetric and highly heterogeneous distributions on the unit interval. This parameterization of heterogeneity also recovers several other canonical distributions as intermediate special cases, including the Gaussian, Rayleigh, and exponential distributions. We then outline a general graph generation algorithm to produce graphs with a desired amount of heterogeneity. The utility of this formulation of a heterogeneity parameter is demonstrated with examples relating to epidemiological modeling and spectral analysis.

Abstract Image

Abstract Image

Abstract Image

使用改进的威布尔分布参数化网络图的异质性。
我们提出了一种简单的方法,用单个参数σ来定量地捕捉网络图度分布的异质性。利用威布尔分布形状参数的指数变换,该控制参数允许在单位区间上的高度对称分布和高度非均匀分布之间容易地插值度分布。异质性的参数化也恢复了其他几种典型分布作为中间的特殊情况,包括高斯分布、瑞利分布和指数分布。然后,我们概述了一种通用的图形生成算法,以生成具有所需异质性的图形。通过与流行病学建模和光谱分析有关的例子,证明了这种异质性参数公式的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Network Science
Applied Network Science Multidisciplinary-Multidisciplinary
CiteScore
4.60
自引率
4.50%
发文量
74
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信