A new type of generalized information criterion for regularization parameter selection in penalized regression with application to treatment process data.

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Amir Hossein Ghatari, Mina Aminghafari
{"title":"A new type of generalized information criterion for regularization parameter selection in penalized regression with application to treatment process data.","authors":"Amir Hossein Ghatari, Mina Aminghafari","doi":"10.1080/10543406.2023.2228399","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a new approach to select the regularization parameter using a new version of the generalized information criterion (<math><mi>GIC</mi></math>) in the subject of penalized regression. We prove the identifiability of bridge regression model as a prerequisite of statistical modeling. Then, we propose asymptotically efficient generalized information criterion (<math><mi>AGIC</mi></math>) and prove that it has asymptotic loss efficiency. Also, we verified the better performance of <math><mi>AGIC</mi></math> in comparison to the older versions of <math><mi>GIC</mi></math>. Furthermore, we propose <math><mi>MSE</mi></math> search paths to order the selected features by lasso regression based on numerical studies. The <math><mi>MSE</mi></math> search paths provide a way to cover the lack of feature ordering in lasso regression model. The performance of <math><mi>AGIC</mi></math> with other types of <math><mi>GIC</mi></math> is compared using <math><mi>MSE</mi></math> and model utility in simulation study. We exert <math><mi>AGIC</mi></math> and other criteria to analyze breast and prostate cancer and Parkinson disease datasets. The results confirm the superiority of <math><mi>AGIC</mi></math> in almost all situations.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"488-512"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2023.2228399","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new approach to select the regularization parameter using a new version of the generalized information criterion (GIC) in the subject of penalized regression. We prove the identifiability of bridge regression model as a prerequisite of statistical modeling. Then, we propose asymptotically efficient generalized information criterion (AGIC) and prove that it has asymptotic loss efficiency. Also, we verified the better performance of AGIC in comparison to the older versions of GIC. Furthermore, we propose MSE search paths to order the selected features by lasso regression based on numerical studies. The MSE search paths provide a way to cover the lack of feature ordering in lasso regression model. The performance of AGIC with other types of GIC is compared using MSE and model utility in simulation study. We exert AGIC and other criteria to analyze breast and prostate cancer and Parkinson disease datasets. The results confirm the superiority of AGIC in almost all situations.

用于惩罚性回归正则化参数选择的新型广义信息准则,并将其应用于治疗过程数据。
我们提出了一种新方法,在惩罚回归课题中使用新版广义信息准则(GIC)来选择正则化参数。作为统计建模的前提条件,我们证明了桥梁回归模型的可识别性。然后,我们提出了渐进有效的广义信息准则(AGIC),并证明其具有渐进损失效率。同时,我们还验证了 AGIC 与旧版 GIC 相比具有更好的性能。此外,我们基于数值研究提出了 MSE 搜索路径,以通过套索回归对所选特征进行排序。MSE 搜索路径提供了一种方法来弥补 lasso 回归模型中特征排序的不足。在模拟研究中,我们使用 MSE 和模型效用比较了 AGIC 与其他类型 GIC 的性能。我们利用 AGIC 和其他标准分析了乳腺癌、前列腺癌和帕金森病数据集。结果证实了 AGIC 在几乎所有情况下的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信