Interactive, in-browser cinematic volume rendering of medical images.

IF 1.3 Q4 ENGINEERING, BIOMEDICAL
Jiayi Xu, Gaspard Thevenon, Timothee Chabat, Matthew McCormick, Forrest Li, Tom Birdsong, Ken Martin, Yueh Lee, Stephen Aylward
{"title":"Interactive, in-browser cinematic volume rendering of medical images.","authors":"Jiayi Xu, Gaspard Thevenon, Timothee Chabat, Matthew McCormick, Forrest Li, Tom Birdsong, Ken Martin, Yueh Lee, Stephen Aylward","doi":"10.1080/21681163.2022.2145239","DOIUrl":null,"url":null,"abstract":"<p><p>The diversity and utility of cinematic volume rendering (CVR) for medical image visualization have grown rapidly in recent years. At the same time, volume rendering on augmented and virtual reality systems is attracting greater interest with the advance of the WebXR standard. This paper introduces CVR extensions to the open-source visualization toolkit (vtk.js) that supports WebXR. This paper also summarizes two studies that were conducted to evaluate the speed and quality of various CVR techniques on a variety of medical data. This work is intended to provide the first open-source solution for CVR that can be used for in-browser rendering as well as for WebXR research and applications. This paper aims to help medical imaging researchers and developers make more informed decision when selecting CVR algorithms for their applications. Our software and this paper also provide a foundation for new research and product development at the intersection of medical imaging, web visualization, XR, and CVR.</p>","PeriodicalId":51800,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10292767/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering-Imaging and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681163.2022.2145239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3

Abstract

The diversity and utility of cinematic volume rendering (CVR) for medical image visualization have grown rapidly in recent years. At the same time, volume rendering on augmented and virtual reality systems is attracting greater interest with the advance of the WebXR standard. This paper introduces CVR extensions to the open-source visualization toolkit (vtk.js) that supports WebXR. This paper also summarizes two studies that were conducted to evaluate the speed and quality of various CVR techniques on a variety of medical data. This work is intended to provide the first open-source solution for CVR that can be used for in-browser rendering as well as for WebXR research and applications. This paper aims to help medical imaging researchers and developers make more informed decision when selecting CVR algorithms for their applications. Our software and this paper also provide a foundation for new research and product development at the intersection of medical imaging, web visualization, XR, and CVR.

交互式、浏览器内电影式医学影像体积渲染。
近年来,用于医学影像可视化的电影体绘制(CVR)的多样性和实用性迅速发展。与此同时,随着 WebXR 标准的推进,增强现实和虚拟现实系统上的体量渲染也引起了更大的兴趣。本文介绍了支持 WebXR 的开源可视化工具包 (vtk.js) 的 CVR 扩展。本文还总结了在各种医疗数据上评估各种 CVR 技术的速度和质量的两项研究。这项工作旨在为 CVR 提供首个开源解决方案,可用于浏览器内渲染以及 WebXR 研究和应用。本文旨在帮助医学影像研究人员和开发人员在为其应用选择 CVR 算法时做出更明智的决定。我们的软件和本文还为医学成像、网络可视化、XR 和 CVR 交叉领域的新研究和产品开发奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
6.20%
发文量
102
期刊介绍: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization is an international journal whose main goals are to promote solutions of excellence for both imaging and visualization of biomedical data, and establish links among researchers, clinicians, the medical technology sector and end-users. The journal provides a comprehensive forum for discussion of the current state-of-the-art in the scientific fields related to imaging and visualization, including, but not limited to: Applications of Imaging and Visualization Computational Bio- imaging and Visualization Computer Aided Diagnosis, Surgery, Therapy and Treatment Data Processing and Analysis Devices for Imaging and Visualization Grid and High Performance Computing for Imaging and Visualization Human Perception in Imaging and Visualization Image Processing and Analysis Image-based Geometric Modelling Imaging and Visualization in Biomechanics Imaging and Visualization in Biomedical Engineering Medical Clinics Medical Imaging and Visualization Multi-modal Imaging and Visualization Multiscale Imaging and Visualization Scientific Visualization Software Development for Imaging and Visualization Telemedicine Systems and Applications Virtual Reality Visual Data Mining and Knowledge Discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信