On High-Dimensional Covariate Adjustment for Estimating Causal Effects in Randomized Trials with Survival Outcomes.

Pub Date : 2023-04-01 Epub Date: 2022-09-25 DOI:10.1007/s12561-022-09358-2
Ran Dai, Cheng Zheng, Mei-Jie Zhang
{"title":"On High-Dimensional Covariate Adjustment for Estimating Causal Effects in Randomized Trials with Survival Outcomes.","authors":"Ran Dai, Cheng Zheng, Mei-Jie Zhang","doi":"10.1007/s12561-022-09358-2","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this work is to improve the efficiency in estimating the average causal effect (ACE) on the survival scale where right-censoring exists and high-dimensional covariate information is available. We propose new estimators using regularized survival regression and survival Random Forest (RF) to adjust for the high-dimensional covariate to improve efficiency. We study the behavior of the adjusted estimators under mild assumptions and show theoretical guarantees that the proposed estimators are more efficient than the unadjusted ones asymptotically when using RF for the adjustment. In addition, these adjusted estimators are <math> <mrow><msqrt><mi>n</mi></msqrt> </mrow> </math> - consistent and asymptotically normally distributed. The finite sample behavior of our methods is studied by simulation. The simulation results are in agreement with the theoretical results. We also illustrate our methods by analyzing the real data from transplant research to identify the relative effectiveness of identical sibling donors compared to unrelated donors with the adjustment of cytogenetic abnormalities.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-022-09358-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this work is to improve the efficiency in estimating the average causal effect (ACE) on the survival scale where right-censoring exists and high-dimensional covariate information is available. We propose new estimators using regularized survival regression and survival Random Forest (RF) to adjust for the high-dimensional covariate to improve efficiency. We study the behavior of the adjusted estimators under mild assumptions and show theoretical guarantees that the proposed estimators are more efficient than the unadjusted ones asymptotically when using RF for the adjustment. In addition, these adjusted estimators are n - consistent and asymptotically normally distributed. The finite sample behavior of our methods is studied by simulation. The simulation results are in agreement with the theoretical results. We also illustrate our methods by analyzing the real data from transplant research to identify the relative effectiveness of identical sibling donors compared to unrelated donors with the adjustment of cytogenetic abnormalities.

分享
查看原文
关于在有生存结果的随机试验中估算因果效应的高维变量调整。
这项工作的目的是在存在右删减和高维协变量信息的情况下,提高生存尺度上平均因果效应(ACE)的估算效率。我们提出了使用正则化生存回归和生存随机森林(RF)来调整高维协变量以提高效率的新估计方法。我们研究了经调整的估计器在温和假设下的行为,并从理论上证明了当使用 RF 进行调整时,所提出的估计器在渐近上比未经调整的估计器更有效。此外,这些调整后的估计值具有 n 一致性和渐近正态分布。我们通过模拟研究了我们方法的有限样本行为。模拟结果与理论结果一致。我们还通过分析移植研究的真实数据来说明我们的方法,以确定同胞捐献者与非亲属捐献者在细胞遗传学异常调整后的相对有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信