Yadong Jiang, William Finnegan, Finlay Wallace, Michael Flanagan, Tomas Flanagan, Jamie Goggins
{"title":"Structural analysis of a fibre-reinforced composite blade for a 1 MW tidal turbine rotor under degradation of seawater.","authors":"Yadong Jiang, William Finnegan, Finlay Wallace, Michael Flanagan, Tomas Flanagan, Jamie Goggins","doi":"10.1007/s40722-023-00279-w","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a structural performance study of a fibre-reinforced composite blade for a 1 MW tidal turbine rotor blade that was designed for a floating tidal turbine device. The 8-m long blade was manufactured by ÉireComposites Teo and its structural performance was experimentally evaluated under mechanical loading in the Large Structures Research Laboratory at the University of Galway. Composite coupons, applied with an accelerated ageing process, were tested to evaluate the influence of seawater ageing effects on the performance of the materials. The material strength of the composites was found to have a considerable degradation under the seawater ingress. As part of the design stage, a digital twin of the rotor blade was developed, which was a finite-element model based on layered shell elements. The finite-element model was verified to have good accuracy, with a difference of 4% found in the blade tip deflection between the physically measured test results in the laboratory and numerical prediction from the model. By updating the numerical results with the material properties under seawater ageing effects, the structural performance of the tidal turbine blade under the working environment was studied. A negative impact from seawater ingress was found on the blade stiffness, strength and fatigue life. However, the results show that the blade can withstand the maximum design load and guarantee the safe operation of the tidal turbine within its design life under the seawater ingress.</p>","PeriodicalId":37699,"journal":{"name":"Journal of Ocean Engineering and Marine Energy","volume":" ","pages":"1-18"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019789/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Marine Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40722-023-00279-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents a structural performance study of a fibre-reinforced composite blade for a 1 MW tidal turbine rotor blade that was designed for a floating tidal turbine device. The 8-m long blade was manufactured by ÉireComposites Teo and its structural performance was experimentally evaluated under mechanical loading in the Large Structures Research Laboratory at the University of Galway. Composite coupons, applied with an accelerated ageing process, were tested to evaluate the influence of seawater ageing effects on the performance of the materials. The material strength of the composites was found to have a considerable degradation under the seawater ingress. As part of the design stage, a digital twin of the rotor blade was developed, which was a finite-element model based on layered shell elements. The finite-element model was verified to have good accuracy, with a difference of 4% found in the blade tip deflection between the physically measured test results in the laboratory and numerical prediction from the model. By updating the numerical results with the material properties under seawater ageing effects, the structural performance of the tidal turbine blade under the working environment was studied. A negative impact from seawater ingress was found on the blade stiffness, strength and fatigue life. However, the results show that the blade can withstand the maximum design load and guarantee the safe operation of the tidal turbine within its design life under the seawater ingress.
期刊介绍:
The Journal of Ocean Engineering and Marine Energy publishes original articles on research and development spanning all areas of ocean engineering and marine energy. The journal is designed to advance scientific knowledge and to foster innovative engineering solutions in the following main fields: coastal engineering, offshore engineering, marine renewable energy, and climate change and the resulting sea-level rise. Topics include, but are not limited to: Offshore wind energy technologyWave and tidal energyOcean thermal energy conversionOceanographical engineeringStructural mechanicsHydrodynamicsLinear and nonlinear wave mechanicsNumerical analysisMarine miningPipelines and risersComputational fluid dynamicsVortex-induced vibrationsArctic engineeringFluid-structure interactionUnderwater technologyFoundation engineeringAquacultural engineeringInstrumentation, full-scale measurements and ocean observational systemsModel testsHydroelasticityOcean acousticsGlobal warming and sea level riseOcean space utilizationWater qualityCoastal engineeringPhysical oceanographyThe journal also welcomes occasional review articles by leading authorities as well as original works on other emerging and interdisciplinary areas encompassing engineering in the ocean environment.