Parcellation of Human Amygdala Subfields Using Orientation Distribution Function and Spectral K-means Clustering.

Qiuting Wen, Brian D Stirling, Long Sha, Li Shen, Paul J Whalen, Yu-Chien Wu
{"title":"Parcellation of Human Amygdala Subfields Using Orientation Distribution Function and Spectral K-means Clustering.","authors":"Qiuting Wen,&nbsp;Brian D Stirling,&nbsp;Long Sha,&nbsp;Li Shen,&nbsp;Paul J Whalen,&nbsp;Yu-Chien Wu","doi":"10.1007/978-3-319-54130-3_10","DOIUrl":null,"url":null,"abstract":"<p><p>Amygdala plays an important role in fear and emotional learning, which are critical for human survival. Despite the functional relevance and unique circuitry of each human amygdaloid subnuclei, there has yet to be an efficient imaging method for identifying these regions <i>in vivo</i>. A data-driven approach without prior knowledge provides advantages of efficient and objective assessments. The present study uses high angular and high spatial resolution diffusion magnetic resonance imaging to generate orientation distribution function, which bears distinctive microstructural features. The features were extracted using spherical harmonic decomposition to assess microstructural similarity within amygdala subfields are identified via similarity matrices using spectral k-mean clustering. The approach was tested on 32 healthy volunteers and three distinct amygdala subfields were identified including medial, posterior-superior lateral, and anterior-inferior lateral.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"2016 ","pages":"123-132"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-54130-3_10","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational diffusion MRI : MICCAI Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-54130-3_10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Amygdala plays an important role in fear and emotional learning, which are critical for human survival. Despite the functional relevance and unique circuitry of each human amygdaloid subnuclei, there has yet to be an efficient imaging method for identifying these regions in vivo. A data-driven approach without prior knowledge provides advantages of efficient and objective assessments. The present study uses high angular and high spatial resolution diffusion magnetic resonance imaging to generate orientation distribution function, which bears distinctive microstructural features. The features were extracted using spherical harmonic decomposition to assess microstructural similarity within amygdala subfields are identified via similarity matrices using spectral k-mean clustering. The approach was tested on 32 healthy volunteers and three distinct amygdala subfields were identified including medial, posterior-superior lateral, and anterior-inferior lateral.

Abstract Image

Abstract Image

基于方向分布函数和谱k均值聚类的人类杏仁核子场分割。
杏仁核在恐惧和情绪学习中起着重要作用,这对人类的生存至关重要。尽管每个人类杏仁核亚核具有功能相关性和独特的电路,但目前还没有一种有效的成像方法来识别这些区域。没有先验知识的数据驱动方法提供了有效和客观评估的优势。本研究采用高角度、高空间分辨率扩散磁共振成像生成具有鲜明微观结构特征的取向分布函数。利用球谐分解提取特征来评估杏仁核子场的微观结构相似性,并利用相似矩阵利用光谱k-均值聚类进行识别。该方法在32名健康志愿者身上进行了测试,并确定了三个不同的杏仁核亚区,包括内侧、后上外侧和前下外侧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信