Deep whole brain segmentation of 7T structural MRI.

Karthik Ramadass, Xin Yu, Leon Y Cai, Yucheng Tang, Shunxing Bao, Cailey Kerley, Micah D'Archangel, Laura A Barquero, Allen T Newton, Isabel Gauthier, Rankin Williams McGugin, Benoit M Dawant, Laurie E Cutting, Yuankai Huo, Bennett A Landman
{"title":"Deep whole brain segmentation of 7T structural MRI.","authors":"Karthik Ramadass, Xin Yu, Leon Y Cai, Yucheng Tang, Shunxing Bao, Cailey Kerley, Micah D'Archangel, Laura A Barquero, Allen T Newton, Isabel Gauthier, Rankin Williams McGugin, Benoit M Dawant, Laurie E Cutting, Yuankai Huo, Bennett A Landman","doi":"10.1117/12.2654108","DOIUrl":null,"url":null,"abstract":"<p><p>7T magnetic resonance imaging (MRI) has the potential to drive our understanding of human brain function through new contrast and enhanced resolution. Whole brain segmentation is a key neuroimaging technique that allows for region-by-region analysis of the brain. Segmentation is also an important preliminary step that provides spatial and volumetric information for running other neuroimaging pipelines. Spatially localized atlas network tiles (SLANT) is a popular 3D convolutional neural network (CNN) tool that breaks the whole brain segmentation task into localized sub-tasks. Each sub-task involves a specific spatial location handled by an independent 3D convolutional network to provide high resolution whole brain segmentation results. SLANT has been widely used to generate whole brain segmentations from structural scans acquired on 3T MRI. However, the use of SLANT for whole brain segmentation from structural 7T MRI scans has not been successful due to the inhomogeneous image contrast usually seen across the brain in 7T MRI. For instance, we demonstrate the mean percent difference of SLANT label volumes between a 3T scan-rescan is approximately 1.73%, whereas its 3T-7T scan-rescan counterpart has higher differences around 15.13%. Our approach to address this problem is to register the whole brain segmentation performed on 3T MRI to 7T MRI and use this information to finetune SLANT for structural 7T MRI. With the finetuned SLANT pipeline, we observe a lower mean relative difference in the label volumes of ~8.43% acquired from structural 7T MRI data. Dice similarity coefficient between SLANT segmentation on the 3T MRI scan and the after finetuning SLANT segmentation on the 7T MRI increased from 0.79 to 0.83 with p<0.01. These results suggest finetuning of SLANT is a viable solution for improving whole brain segmentation on high resolution 7T structural imaging.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12464 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10139750/pdf/nihms-1858231.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2654108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

7T magnetic resonance imaging (MRI) has the potential to drive our understanding of human brain function through new contrast and enhanced resolution. Whole brain segmentation is a key neuroimaging technique that allows for region-by-region analysis of the brain. Segmentation is also an important preliminary step that provides spatial and volumetric information for running other neuroimaging pipelines. Spatially localized atlas network tiles (SLANT) is a popular 3D convolutional neural network (CNN) tool that breaks the whole brain segmentation task into localized sub-tasks. Each sub-task involves a specific spatial location handled by an independent 3D convolutional network to provide high resolution whole brain segmentation results. SLANT has been widely used to generate whole brain segmentations from structural scans acquired on 3T MRI. However, the use of SLANT for whole brain segmentation from structural 7T MRI scans has not been successful due to the inhomogeneous image contrast usually seen across the brain in 7T MRI. For instance, we demonstrate the mean percent difference of SLANT label volumes between a 3T scan-rescan is approximately 1.73%, whereas its 3T-7T scan-rescan counterpart has higher differences around 15.13%. Our approach to address this problem is to register the whole brain segmentation performed on 3T MRI to 7T MRI and use this information to finetune SLANT for structural 7T MRI. With the finetuned SLANT pipeline, we observe a lower mean relative difference in the label volumes of ~8.43% acquired from structural 7T MRI data. Dice similarity coefficient between SLANT segmentation on the 3T MRI scan and the after finetuning SLANT segmentation on the 7T MRI increased from 0.79 to 0.83 with p<0.01. These results suggest finetuning of SLANT is a viable solution for improving whole brain segmentation on high resolution 7T structural imaging.

7T 结构磁共振成像的深层全脑分割。
7T 磁共振成像(MRI)通过新的对比度和更高的分辨率,有可能推动我们对人脑功能的了解。全脑分割是一项关键的神经成像技术,可对大脑进行逐区分析。分割也是一个重要的初步步骤,可为运行其他神经成像管道提供空间和容积信息。空间局部图集网络瓦片(SLANT)是一种流行的三维卷积神经网络(CNN)工具,它将整个大脑的分割任务分解为局部子任务。每个子任务都涉及特定的空间位置,由独立的三维卷积网络处理,从而提供高分辨率的全脑分割结果。SLANT 已被广泛用于从 3T 磁共振成像获取的结构扫描结果中生成全脑分割结果。然而,由于在 7T 磁共振成像中,整个大脑的图像对比度通常不均匀,因此使用 SLANT 对 7T 磁共振成像结构扫描进行全脑分割并不成功。例如,我们证明 3T 扫描-扫描之间 SLANT 标签体积的平均百分比差异约为 1.73%,而 3T-7T 扫描-扫描之间的差异则更大,约为 15.13%。我们解决这一问题的方法是将在 3T 磁共振成像上进行的全脑分割注册到 7T 磁共振成像上,并利用这一信息对 SLANT 进行微调,使其适用于结构性 7T 磁共振成像。通过对 SLANT 管道进行微调,我们观察到从结构性 7T MRI 数据中获取的标注体积的平均相对差异较低,约为 8.43%。3T 磁共振成像扫描的 SLANT 分割与 7T 磁共振成像微调后的 SLANT 分割之间的 Dice 相似性系数从 0.79 增加到 0.83,p<0.05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信