Fish Hacks: Hybridizing Stand-Alone Zebrafish System Plumbing and Pumps to Extend and Improve Function.

IF 1.4 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY
Zebrafish Pub Date : 2023-06-01 DOI:10.1089/zeb.2023.0011
Jacob Starkey, Eric J Horstick
{"title":"Fish Hacks: Hybridizing Stand-Alone Zebrafish System Plumbing and Pumps to Extend and Improve Function.","authors":"Jacob Starkey,&nbsp;Eric J Horstick","doi":"10.1089/zeb.2023.0011","DOIUrl":null,"url":null,"abstract":"<p><p>One of the greatest expenses in running a zebrafish laboratory is the aquatic systems used for housing. These critical pieces of equipment are essential and incorporate components undergoing constant activity in pumping water, monitoring, dosing, and filtration. The systems available on the market are robust, yet ongoing activity eventually leads to the need for repair or replacement. Moreover, some systems are no longer commercially available, impairing the ability to service this critical infrastructure. In this study, we demonstrate a do it yourself (DIY) method to re-engineer an aquatic system's pumps and plumbing, which hybridizes a system no longer commercially available with components used by active vendors. This transition from a two external pump Aquatic Habitat/Pentair design to an individual submerged pump Aquaneering-like plan saves funds by expanding infrastructure longevity. Our hybridized configuration has been in uninterrupted use for >3 years, supporting zebrafish health and high fecundity.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280213/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2023.0011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

One of the greatest expenses in running a zebrafish laboratory is the aquatic systems used for housing. These critical pieces of equipment are essential and incorporate components undergoing constant activity in pumping water, monitoring, dosing, and filtration. The systems available on the market are robust, yet ongoing activity eventually leads to the need for repair or replacement. Moreover, some systems are no longer commercially available, impairing the ability to service this critical infrastructure. In this study, we demonstrate a do it yourself (DIY) method to re-engineer an aquatic system's pumps and plumbing, which hybridizes a system no longer commercially available with components used by active vendors. This transition from a two external pump Aquatic Habitat/Pentair design to an individual submerged pump Aquaneering-like plan saves funds by expanding infrastructure longevity. Our hybridized configuration has been in uninterrupted use for >3 years, supporting zebrafish health and high fecundity.

Abstract Image

Fish Hacks:将独立的斑马鱼系统管道和泵混合,以扩展和改善功能。
运营斑马鱼实验室的最大开支之一是用于住房的水生系统。这些关键设备是必不可少的,包括在抽水、监测、加药和过滤过程中不断活动的部件。市场上可用的系统是稳健的,但持续的活动最终导致需要维修或更换。此外,一些系统已不再商业化,削弱了为这一关键基础设施提供服务的能力。在这项研究中,我们展示了一种自己动手(DIY)的方法来重新设计水生系统的水泵和管道,该方法将不再商业化的系统与活跃供应商使用的组件混合在一起。从两个外部水泵Aquatic Habitat/Pentair设计过渡到类似Aquaneering的单独潜水泵计划,通过延长基础设施的使用寿命来节省资金。我们的杂交配置已连续使用超过3年,支持斑马鱼的健康和高繁殖力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Zebrafish
Zebrafish DEVELOPMENTAL BIOLOGY-ZOOLOGY
CiteScore
3.60
自引率
5.00%
发文量
29
审稿时长
3 months
期刊介绍: Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease. Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage. Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community. TechnoFish features two types of articles: TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community Zebrafish coverage includes: Comparative genomics and evolution Molecular/cellular mechanisms of cell growth Genetic analysis of embryogenesis and disease Toxicological and infectious disease models Models for neurological disorders and aging New methods, tools, and experimental approaches Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信